簡易檢索 / 詳目顯示

研究生: 陳志在
Chen, Jr-Tzai
論文名稱: 結合表面增顯拉曼散射及奈米粒子免疫分析技術之研發
Development of Immunoassay Combining Nanoparticles with Surface-Enhanced Raman Scattering Technology
指導教授: 張長泉
Chang, Tsung-Chain
張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 奈米金微粒、表面增顯拉曼散射、金黃葡萄球菌、免疫分析法
外文關鍵詞: Nanogold particle, Staphylococcus aureus, Surface-enhanced Raman scattering, Immunoassay
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金黃色葡萄球菌是造成嚴重感染和院內感染的重要病原菌,根據美國國家衛生研究院之院內感染監測系統統計,從1979到1995年院內感染病人身上培養出的菌株,金黃色葡萄球菌佔13%,且近年來有逐漸增加之趨勢,其快速鑑定愈形迫切。臨床檢驗上,免疫分析方法是目前最常用的檢驗技術,由於免疫分析方法具有相當高的特異性和靈敏度(1-10 ng/mL的抗原偵測量),其應用歷久不衰。據報告顯示在1000個住院病人中得到菌血症的比例約為3.4至28人(平均10人),死亡率約在15-30%。而引起菌血症的其中一種細菌正是金黃色葡萄球菌。現行免疫分析儀器缺點為售價高昂、測試項目過於窄化、操作煩瑣耗時且大多侷限於終點測試、部分並具有潛在危害(如放射性同位素)等。基於此,本研究對免疫分析技術想嘗試一革命性的改良,實驗步驟乃先製備直徑5 nm的奈米金(1×10-9 M),以磷酸緩衝溶液配製不同濃度的抗體溶液,取得抗體與奈米金的最佳體積比例為10:1,純化後以OD280測定免疫金所接合的抗體含量是0.28,而達到最高接合抗體數目。並以點群C2v的對硫醇苯甲酸為分子探針,取濃度1×10-3 M的探針溶液20 l混合均勻即可,此分子在1073 cm-1和1580 cm-1具有很強的拉曼活性,再配合表面增顯拉曼散射將訊號放大10-100倍。最後,以金黃色葡萄球菌產生的特異性蛋白為模式系統,針對抗原濃度在10-5、10-6、10-7、10-8、10-9、10-10、10-11、10-12 g/ml做分析。結果顯示,迄今我們已可取得10-100 pg/ml的靈敏度與特異性,於傳統酵素免疫分析法比較可發現,其偵測極限高出1-2級數。此將可提供未來於單顆菌株之量測,因其可同時取得偵測目標生理結構的拉曼圖譜,故本免疫分析法,可同時得到定性與定量結果,不僅增加偵測極限,在未來應可再搭配介電泳晶片,發展成更快速、靈敏、簡易之方法,創立全新面貌之免疫分析系統。

    Staphylococcus aureus is one of important pathogens, is always the orgin of infection in the hospital. Acroding to the statistics of the infectants, 13 percentages of the bacteria which detected was Staphylococcus aureus. There are trend increased year by year, and the rapid test is urgency. Immunoassays have been commonly used in the clinical laboratories for detection of a variety of antigens and antibodies. Basically, immunoassays are sensitive (around 1-10 ng/ml) and specific. The incident of bacteremia and fungemia has been reported to be 3.4-28/1,000 hospital admissions, and was estimated to an average of 10/1,000 (1%) around the world. The crude mortality rates of bacteremia ranged from 15 to 30%. The one of the common isolates from the blood cultures is staphylococcus aureus. The shortcoming of current immune analytical instrument is high price, narrow test project, convoluted operation and partly has potential to endanger (such as the radio isotope). We fabricated 5 nm (1×10-9 M) gold nanoparticles, and the antibody was diluted by PB (phosphate buffer). The optimal ratio of antibody to gold was 10:1, and the suspension of the antibody was 0.28 in A280. The point group of 4-mercapto- benzoic acid is C2v, and it can be used as molecular probe. The optimal concentration of mixed probe was 1×10-3 M. This probe has strong Raman signals in 1073 cm-1and 1585 cm-1, and can be enhanced to 1-2 order by gold nanoparticles. Protein A will be used as a model system, and its concentration was adjusted to be 10-5, 10-6, 10-7, 10-8, 10-9, 10-10, 10-11, 10-12 g/ml during the analysis. As a result, it showed that the detection of limit could reach to 10-100 pg/ml of antigen concentration and higher than the traditional method in sensitivity. The Raman scattering method may simultaneously provide the qualitative and quantitative analysis as a new immunoassay.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 前言 1 1.1 研究目的與動機 1 1.2 拉曼光譜的發展史 5 1.3 拉曼光譜基本理論 6 1.3.1 拉曼效應 6 1.3.2 古典理論 7 1.3.2 紅外線吸收光譜與拉曼散射光譜 8 1.3.3 選擇律 12 1.3.4 可極化性與偏極化的量測 14 1.4 表面增顯拉曼光譜 16 1.4.1 表面增顯拉曼散射基本理論 16 1.4.2 電磁波增顯理論 18 1.4.3 化學增顯理論 20 1.4.4 表面增顯拉曼光譜的特徵 21 1.5 拉曼光譜於微生物檢測上的應用 22 1.6 研究架構圖 25 第二章 文獻回顧與實驗原理 26 2.1 文獻回顧 26 2.1.1 奈米金的種類及相關性質 26 2.1.2 結合奈米金粒子之菌株檢測 29 2.1.3 結合分子探針之拉曼分析 30 2.2 奈米金的製備 31 2.3 奈米金表面蛋白之被覆(coating) 33 2.4 固定分子探針於金奈米 35 2.5 聚二甲基矽氧烷於免疫基盤之應用 36 2.6 免疫分析法 37 第三章 研究設備與方法 39 3.1 實驗儀器介紹 39 3.2 實驗藥品及其性質 41 3.2.1 實驗藥品 41 3.2.2 實驗藥品配製 42 3.3 拉曼光譜儀器架構圖 44 3.4 金奈米的製備及保存 45 3.5 奈米金與抗體結合的結合及最佳條件之擷取 46 3.6 奈米金與分子探針的結合及最佳條件之擷取 47 3.7免疫金之純化與保存 48 3.8免疫分析法之研究 49 3.8.1 免疫晶片製作 49 3.8.2 修飾微量滴定盤 51 3.8.3 免疫檢測分析法 52 3.9 拉曼光譜的量測 53 3.9.1 拉曼光譜的量測與數據處裡 53 3.9.2 曲線擬合(curve-fitting) 54 第四章 研究結果與討論 55 4.1 奈米金製作技術與保存方式的探討 55 4.2 奈米金與抗體接合技術探討 57 4.3 奈米金與分子探針接合的技術探討 58 4.4 拉曼光譜與表面增顯拉曼光譜的量測 59 4.4.1基材背景值訊號之探討 59 4.4.2 分子探針光譜之分析與探討 61 4.4.3 金黃色葡萄球菌光譜之分析與探討 64 4.4.4 蛋白質光譜之分析與探討 66 4.4.5 其他光譜之分析與探討 67 4.5 免疫分析實驗的最佳化探討 71 4.5.1 酵素結合免疫球吸附分析法 71 4.5.2 以免疫金為探針之免疫晶片 72 第五章 結論 74 5.1 免疫晶片在金黃色葡萄球菌檢測的可行性 74 5.2 未來的發展與應用 77 參考文獻 78 附錄 83 自述 87

    [1] 蔡文城,實用臨床微生物診斷學,九州圖書,台北,360-373,2000。
    [2] Smekal A., Naturwiss., Vol. 11, p.873
    [3] Feng Z. C., A. A. Allerman, P. A. Barnes and S. Perkowitz,” Raman scattering of InGaAs/InP grown by uniform radial flow epitaxy”, Applied Physics Letters, 60, 1848 (1992).
    [4] Estrera J. P., P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao, Y. H. Liu and E. A. Beam,” Phonon mode study of near-lattice-matched InxGa1–xAs using micro-Raman spectroscopy”, Applied Physics Letters, 61, 1927 (1992).
    [5] Lucovsky G., M. H. Brodsky, M. F. Chen, R. J. Chicotka and A. T. Ward,” Long-Wavelength Optical Phonons in Ga1-xInxP”, Physical Review B, 4, 1945 (1971).
    [6] Koji Y. and T. Katoda,” Raman spectra and electric resistance of thermally treated In/GaAs structures”, Journal of Applied Physics, 70, 7036 (1991).
    [7] Bour D. P., J. R. Shealy, A. Ksendzov and Fred Pollak,” Optical investigation of organometallic vapor phase epitaxially grown AlxGa1–xP”, Journal of Applied Physics, 64, 6456 (1988).
    [8] Ferraro J. R. and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press, San Diego, 71-92 (1994).
    [9] Moskovits M.”Surface-enhanced spectroscopy”, Reviews of Modern Physics, 57,785-826 (1985).
    [10] Rechberger W., A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg,“ Optical properties of two interacting gold nanopartilces“, Optics Communications, 220, 137-141 (2003).
    [11] Campion A., and P. Kambhampati,” Surface-Enhanced Raman Scattering”, Chemical Society Reviews, 27, 241-250 (1998).
    [12] Tian Z. Q.,”Surface-Enhanced Raman Spectroscopy”, the Internat Journal of Vibrational Spectroscopy, 4, 2(2000).
    [13] Schuster K. C., I. Reese, E. Urlab, J. R. Gapes and B. Lenfl,” Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy”, Analytical Chemistry, 72, 5529 (2000).
    [14] Alexander T. A., P. M. Pelligrino and J. B. Gillespie,” Near-Infrared Surface-Enhanced-Raman-Scattering-Mediated Detection of Single Optically Trapped Bacterial Spores”, Applied Spectroscopy, 57, 1340-1345 (2003).
    [15] Wold J. P., B.J. Marquardt, B.K. Dable, D. Robb and B. Hatlen,” Rapid Quantification of Carotenoids and Fat in Atlantic Salmon (Salmo salar L.) by Raman Spectroscopy and Chemometrics”, Applied Spectroscopy, 58, 395-403 (2004).
    [16] Sockalingum G. D., H. Lamfarraj, A. Beljebbar, P. Pina, M. Delavenne, F. Witthuhn, P. Allouch and M. Manfait,” Biomedical Applications of Raman Spectroscopy”, SPIE, 3608, 185 (1999).
    [17] Acrangeli C. and S. Cannistraro,” Biological Systems and Biotechnological Production”, Biopolymers, 57, 179-186 (2000).
    [18] Matsi H. and S. Pan,” Conformation Change of Poly(dG-dC) Poly(dG-dC) in Cationic Polyamine Liposome Complexes: Effect of Charge Density and Flexibility of Amine Chains in Headgroups”, Journal of Physical Chemistry B, 104, 8871 (2000).
    [19] Zheng J., Q. Zhou, Y. Zhou, T. Lou, T.M. Cotton and G. Chumanov,” Surface-enhanced resonance Raman spectroscopic study of yeast iso-1-cytochrome c and its mutant ”, Journal of Electroanalytical Chemistry, 530, 75-81 (2002).
    [20] Frank C.J., R.L. McCreery and D.C. Redd,” Raman Spectroscopy of Normal and Diseased Human Breast Tissues”, Analytical Chemistry, 67, 777-783 (1995).
    [21] Ratledge C. and C. T. Evans,” Lipids and their Metabolism”, The Yeasts, eds A. H. Rose and J. S. Harrison, Academic Press, New York, 367-455 (1989).
    [22] 張立德、季美,奈米材料和奈米結構,滄海書局,台中。
    [23] Kneipp J., H. Kneipp, L. R. William, and K. Knaipp,” Optical Probes for Biological Applications Based on Surface-Enhanced Raman Scattering from Indocyanine Green on Gold Nanoparticles” Analytical Chemistry, 77, 2381-2385 (2005).
    [24] Jana L. R., L. Gearheart, C. J. Murphy,” Evidence for seed-mediate nucleation in the chemical reduction of gold salts to gold nanoparticles”, Chemistry of Materials, 13, 2313-2322 (2001).
    [25] Ai H., M. Fang, S. A. Jones, Y. M. Lvov,”Electrostatic Layer-by-Layer Nanoassembly on Biological Microtemplates: Platelets”, Biomacromolecules, 3, 560-564 (2002).
    [26] Chasovnikova L. V., N.A. Matveeva, V. V. Lavrent, “Relation between surface denaturation of immunoglobulin G in monolayers and the pH of the solution”, Biofizika, 25, 984-988 (1980).
    [27] M. A. Hayat, Colloidal Gold, Harcourt Brace Jovanovich, New York, 105 (1989).
    [28] Horisberger M., and J. Rosset,” Colloidal gold, a useful marker for transmission and scanning electron microscopy”, Journal of Histochemistry and Cytochemistry, 25, 295 (1977).
    [29] Teng C. H., K. C. Ho, Y. S. Lin, Y. C. Chen,”Gold nanoparticles as selective and concentrating probes for samples in MALDI-MS analysis”, Analytical Chemistry, 76, 4337-4342 (2004).
    [30] Kunchan H., T. Peijane, L. Yashiuan, and C. Yuchie, “Using biofunctionalized nanoparticles to probe pathogenic bacteria”, Analytical Chemistry, 76, 7162-7168 (2004).
    [31] Seydack M., “Nanoparticle labels in immunosensing using optical detection methods”, Biosensors and Bioelectronics, 20, 2454-2469 (2005).
    [32] Weisbecker C. S., M. V. Merritt, and W. M. George, “Molecular Self-Assembly of Aliphatic Thiols on Gold Colloids“, Langmuir, 12, 3763-3772 (1996).
    [33] G. Chumanov, K. Sokolov, B. W. Gregory, T. M. Cotton,” Colloidal metal films as a substrate for surface-enhanced spectroscopy”, Journal of Physical Chemistry , 99, 9466-9471 (1995).
    [34] Shuping X., J. Xiaohui, X. Weiqing, L. Xiaoling, W. Lianying, B. Yubai, Z. Bing and Y. Ozaki,”Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering”, The Analyst, 129, 63-68 (2004).
    [35] Ren X., M. Bachman, C. Sims, G. P. Li, N. Allbritton, ” electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane) “, Journal of Chromatography B, 762, 117-125 (2001).
    [36] Makamba H., J. H. Kim, K. Lim, N. Park, J. H. Hahn, “ Surface modification of poly(dimethylsiloxane) microchannels”, Electrophoresis, 24, 3607-3619 (2003).
    [37] Duffy D. C., J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”, Analytical Chemistry, 70, 4974-4984 (1998).
    [38] Movitz J., S. Masuda, and J. Sjoquist,”Physico- and immunochemical properties of Staphylococcal protein a extracellularly produced by a set of mutants from Staphylococcus aureus Cowan I”, Microbiology and Immunology, 23, 51 (1979).
    [39] Chen C. H., H. C. Ding, T. C. Chang, “ Rapid identification of Bacillus cereus Based on the Detection of a 28.5-Kilodalton Cell Surface Antigen”, Journal of Food Protection, 64, 348-354 (2001).
    [40] Goldberg I. J., D. A. Handley, T. Vanni, and J. A. Paterniti,” Membrane bound lipoprotein lipase on human monocyte-derived macrophages: Localization by immunocolloidal gold technique”, Biochimica et Biophysica Acta, 959, 220 (1988).
    [41] Frank C., N. Kenichi, D. N. Furlong, and Y. Okahata, “Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing” Langmuir, 13, 3427-3433 (1997).
    [42] Handley D. A., S. Chien,”Colloidal gold labeling studies related to vascular and endothelial function, hemostasis and receptor-mediated processing of plasma macromolecules”, European Journal of Cell Biology, 43, 163 (1987).
    [43] Jack G. D. and L. K. Denoyer, Handbook of vibrational spectroscopy, John Wiley & Sons Ltd, New York, 2, 2215-2223 (2002).
    [44] Bevington P. R.,” Data reduction and error analysis for the physical sciences”, McGraw-Hill, New York, Chap. 3 (1969).
    [45] Mysen B. O., L. W. Finger, D. Virgo, and F. A. Seifert,” Curve-fitting of Raman spectra of silicate glasses”, American Mineralogist, 67, 686-695 (1982).
    [46] Mathew M. M. and J. Z. Chuan,” Manipulating core–shell reactivities for processing nanoparticle sizes and shapes”, Journal of Materials Chemistry, 10, 1895-1901 (2000).
    [47] Bernhard S., Infrared and Raman Spectroscopy, Weinheim, Germany, 190-191 (1995).
    [48] Chalmers J. M., P. R. Griffiths, Handbook of Vibrational Spectroscopy, John Wiley & Sons Ltd, USA, 3310 (2002).
    [49] Lisbeth G. T., M. L.Mette, M. Elisabeth and B. E. Soren,”Vibrational microspectroscopy of food Raman vs. FT-IR”, Trends in Food Science & Technology, 14, 50–57 (2003).

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE