| 研究生: |
施俊宇 Shih, Chun-Yu |
|---|---|
| 論文名稱: |
低差點高爾夫選手軀幹與手部動作對短桿表現之影響 The Impact of Torso and Arm Movements of Low-Handicap Golfers on Short Game Performance |
| 指導教授: |
王駿濠
Wang, Chun-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 低差點 、短切球 、軀幹與手部動作 、運動學與動力學 、慣性感測 、SG:ATG |
| 外文關鍵詞: | low handicap , chip shot, Torso and hand movements., Kinematics and Dynamics., Inertial sensing., SG:ATG |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討低差點高爾夫球員於短桿擊球(30 碼短切球)時,軀幹與手部的運動學與動力學特徵,以及其動作變異性對擊球表現之影響。短桿技術對降低總桿數具有決定性作用,但現有文獻對於短桿生物力學之分析仍不足,特別是在軀幹與手部協調與控制方面。本研究試圖填補此一知識缺口,並提出具體可行的訓練建議。
研究方法方面,共招募十八位低差點男性高爾夫選手(平均差點 ≤ 9),於戶外練習場進行標準化之 30 碼短切球實驗。實驗過程中,於受試者右手手背及頸椎基準點(C7)分別配置 Blue Trident 慣性感測器(IMU)以 1600 Hz 頻率蒐集加速度數據,並同步使用 Foresight GCQuad 高爾夫參數分析儀記錄球速、發射角、旋轉軸、後旋率、擊球落點距離與分佈等擊球表現指標。所有數據經 MATLAB 分析後,萃取加速度峰值、範圍值及變異係數,並與擊球表現進行相關性檢驗。
研究結果顯示,右手加速度的峰值與範圍值與發射角呈顯著正相關(r ≈ 0.53–0.56,p < 0.05);手部與軀幹加速度比值與球落點分佈呈高度正相關(r = 0.69,p < 0.01),並與發射角及旋轉軸亦具中度相關性(p < 0.05)。此外,手部與軀幹加速度變異性與擊球穩定性密切相關,顯示低差點選手穩定且可重複的動作模式,有助於提升擊球精準度與落點一致性。
討論指出,雖然傳統教學強調「手腕無動作」,但實際上高技術水準選手於觸球前後對前導手腕的控制與釋放時機極為關鍵。穩定的軀幹旋轉結合高度一致的腕部動作模式,是短切球成功的核心。研究並透過利得桿數(Strokes Gained: Around the Green, SG:ATG)架構,歸納短切球表現的四大關鍵能力:距離控制、方向控制、觸球品質與旋轉控制,並提出以「動作一致性與可控性」為核心的訓練方向。
結論方面,本研究提供了以量化數據支持的短桿動作模式,說明低差點高爾夫選手透過穩定且可重複的軀幹與手部協調,可顯著提升短切球表現。本研究成果可為高水準球員及教練提供具體依據,協助制定更精準的短桿訓練策略。
This study investigates the kinematic and kinetic characteristics of torso and arm movements in low-handicap golfers during 30-yard chip shots, and examines their relationships with short game performance metrics. Eighteen male low-handicap golfers (average handicap ≤ 9) participated in the study. Torso (C7) and right-hand accelerations were recorded using Blue Trident inertial measurement units (IMUs) at 1600 Hz, while club delivery and ball launch parameters were simultaneously measured via a GCQuad photometric launch monitor. Correlation analyses revealed that peak and range values of hand acceleration exhibited significant positive relationships with launch angle (r = 0.528 and r = 0.561, p < 0.05). The hand-to-torso acceleration ratio was strongly correlated with ball landing dispersion (r = 0.691, p < 0.01) and moderately correlated with launch angle and spin axis (both p < 0.05), suggesting that disproportionate reliance on hand-generated acceleration may compromise shot consistency and directional control. These findings highlight the importance of coordinated torso–arm movement patterns for optimizing impact conditions and minimizing shot variability. The results provide evidence-based insights for refining advanced short game training programs, emphasizing the control of segmental acceleration and movement variability to enhance performance consistency among elite golfers.
Armitage, M., Beato, M., & McErlain-Naylor, S. A. (2021). Inter-unit reliability of IMU Step metrics using IMeasureU Blue Trident inertial measurement units for running-based team sport tasks. Journal of sports sciences, 39(13), 1512-1518.
Baugher, C. D., Day, J. P., & Burford Jr, E. W. (2016). Drive for show and putt for dough? Not anymore. Journal of Sports Economics, 17(2), 207-215.
Bourgain, M., Rouch, P., Rouillon, O., Thoreux, P., & Sauret, C. (2022). Golf swing biomechanics: A systematic review and methodological recommendations for kinematics. Sports, 10(6), 91.
Brennan, A., Ehlert, A., Wells, J., Broadie, M., Coughlan, D., Turner, A., & Bishop, C. (2023). Monitoring performance in golf: More than just clubhead speed. Strength & Conditioning Journal, 45(6), 631-641.
Broadie, M. (2008). Assessing golfer performance using golfmetrics. In Science and golf V: Proceedings of the 2008 world scientific congress of golf (Vol. 9). St. Andrews, UK: World Scientific Congress of Golf Trust
Broadie, M. (2012). Assessing golfer performance on the PGA TOUR. Interfaces, 42(2), 146-165.
Brožka, M., Carson, H. J., Komarc, M., Zahálka, F., & Gryc, T. (2023). Which specific golf skills are related to performance in skilled junior golfers? International Journal of Golf Science, 11(1).
Brožka, M., Gryc, T., Kotrba, M., & Zahálka, F. (2021). Analysing the accuracy of elite amateur golf players during a pre-tournament wedge test. The Open Sports Sciences Journal, 14(1).
Brožka, M., Gryc, T., Miřátský, P., & Zahálka, F. (2022). An assessment of the relationships between ball flight results, impact factors, and golf performance. Human Movement, 23(1), 1-9.
Chamberlain, L. (2017). Assessing Golfer Performance on the PGA Tour Dublin, National College of Ireland].
Charles, J., Smith, D. J., & McLean, D. S. (2013). The effect of skill level on the mechanics of a golf chip shot. In International Journal of Exercise Science: Conference Proceedings (Vol. 2, No. 5, p. 76).
Corke, T. W., Betzler, N. F., Wallace, E. S., & Otto, S. R. (2022). Predicting golf ball launch characteristics using iron clubhead presentation variables and the influence of mishits. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 236(2), 124-133.
Fedorcik, G. G., Queen, R. M., Abbey, A. N., Moorman III, C. T., & Ruch, D. S. (2012). Differences in wrist mechanics during the golf swing based on golf handicap. Journal of Science and Medicine in Sport, 15(3), 250-254.
Ferguson, S. (2023). A Two-Armed Forward Dynamic Model of a Golf Drive: A Simulation and Optimization Tool for Golf Equipment and Biomechanics (Doctoral dissertation, University of Waterloo).
Herder, P., & Benoit, L. (2022). The relationship between player skill level and golf shot “feel” estimation. International Journal of Golf Science, 10(10 (1)).
Hume, P. A., Keogh, J., & Reid, D. (2005). The role of biomechanics in maximising distance and accuracy of golf shots. Sports medicine, 35(5), 429-449.
James, N., & Rees, G. D. (2008). Approach shot accuracy as a performance indicator for US PGA Tour golf professionals. International Journal of Sports Science & Coaching, 3(1_suppl), 145-160.
Kim, M., & Park, S. (2024). Enhancing accuracy and convenience of golf swing tracking with a wrist-worn single inertial sensor. Scientific Reports, 14(1), 9201.
Marsan, T., Thoreux, P., Bourgain, M., Rouillon, O., Rouch, P., & Sauret, C. (2019). Biomechanical analysis of the golf swing: methodological effect of angular velocity component on the identification of the kinematic sequence. Acta of Bioengineering and Biomechanics, 21(2), 115-120.
Merry, C., Baker, J. S., Dutheil, F., & Ugbolue, U. C. (2022). Do kinematic study assessments improve accuracy & precision in golf putting? A comparison between elite and amateur golfers: A systematic review and meta-analysis. Physical Activity and Health, 6(1).
Myers, J., Lephart, S., Tsai, Y.-S., Sell, T., Smoliga, J., & Jolly, J. (2008). The role of upper torso and pelvis rotation in driving performance during the golf swing. Journal of sports sciences, 26(2), 181-188.
Nesbit, S. M. (2005). A three dimensional kinematic and kinetic study of the golf swing. Journal of Sports Science & Medicine, 4(4), 499.
Nesbit, S. M., & McGinnis, R. (2009). Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers. Journal of Sports Science & Medicine, 8(2), 235.
Tinmark, F., Hellström, J., Halvorsen, K., & Thorstensson, A. (2010). Elite golfers' kinematic sequence in full-swing and partial-swing shots. Sports Biomechanics, 9(4), 236-244.
Wood, P., Henrikson, E., & Broadie, C. (2018). The influence of face angle and club path on the resultant launch angle of a golf ball. In Proceedings (Vol. 2, No. 6, p. 249).
You, X., Xu, Y., Liang, M., Baker, J. S., & Gu, Y. (2023). The relationship between ground reaction forces, foot positions and type of clubs used in golf: A systematic review and meta-analysis. Applied Sciences, 13(12), 7209.