簡易檢索 / 詳目顯示

研究生: 許嘉翔
Hsu, Jia-Xiang
論文名稱: 近臨界濃度下的鎳鉬二元合金磁性特性
Magnetic properties of binary alloys Ni1-xMox close to the critical concentration
指導教授: 黃建龍
Huang, Chien-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 76
中文關鍵詞: 量子擾動量子臨界點化學無序自旋玻璃
外文關鍵詞: quantum fluctuation, quantum critical point, chemical disorder, spin glass
相關次數: 點閱:142下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫度常被用來衡量相變是否會發生,因為溫度所導致的熱擾動會影響系統內部的物理性質,是驅動相變的重要因素之一。在古典力學的架構下,當溫度為絕對零度時,相變是不可能發生的。然而,由於量子力學的不確定性原理所產生的量子擾動,使得在絕對零度發生相變成為可能。這種由於量子擾動主導所發生的相變稱為量子相變,此時的相變點又稱量子臨界點,在這種相變點附近,經常會發現不符合費米液體的物理行為以及非常規超導現象。然而在實驗上,發現的鐵磁性的量子臨界點卻相對稀少。Belitz, Kirkpatrick, 和Vojta三人透過理論分析解釋該現象的原因,並預測可以透過化學無序的方式來達到量子臨界點。在這份研究當中,我們透過元素 Mo 置換掉部分的 鐵磁元素Ni,來增加系統內的無序程度,以此來降低鐵磁相變溫度,並透過比熱、磁性以及電阻等,研究Ni1−xMox系統接近絕對零度時的行為。我們發現在系統的無序性提高後,磁性行為有減弱的跡象,並在比熱數據出現了發散的非費米液體行為,說明系統逐漸由熱擾動轉變為量子擾動主導。然而,在 x = 0.095,系統出現了自旋玻璃行為,這是因為無序性過大所導致,使得系統由長程有序轉變為短程有序,與量子臨界點的物理行為並不相同,因此我們認為Ni1−xMox系統並不存在鐵磁性的量子臨界點。

    Temperature is often used to determine whether a phase transition will occur because the thermal fluctuations caused by temperature affect the physical properties within a system, making it a key factor in driving phase transitions. In the framework of classical mechanics, phase transitions are impossible at absolute zero temperature. However, due to the uncertainty principle of quantum mechanics, quantum fluctuation can cause phase transitions even at 0 K. These transitions, dominated by quantum fluctuation, are known as quantum phase transitions, with the transition points referred to as quantum critical points (QCP). Near these points, non-Fermi liquid behavior and unconventional superconductivity are often observed. Experimentally, however, ferromagnetic quantum critical points are relatively rare. Belitz, Kirkpatrick, and Vojta theoretically explained this phenomenon and predicted that a quantum critical point could be achieved through chemical disorder.
    In this study, we increased the disorder in the system by partially substituting Mo for Ni, thereby lowering the ferromagnetic phase transition temperature. We examined the behavior of the Ni1−xMox system near absolute zero through specific heat, magnetism, and electrical resistance measurements. Our findings indicate that increasing disorder weakens the magnetic behavior, and divergent non-Fermi liquid behavior wasobserved in the specific heat data, suggesting that the system is transitioning from thermal fluctuation dominance to quantum fluctuation dominance. However, at x = 0.095, the system exhibited spin-glass behavior due to excessive disorder, causing the system to shift from long-range to short-range order, which differs from the physical behavior of a QCP. Therefore, we conclude that the Ni1−xMox system does not exhibit a ferromagnetic QCP.

    中文摘要 i Abstract ii Acknowledgements iv Contents v List of tables vii List of figures viii 1 Introduction 1 2 Theory 3 2.1 Phase Transition 3 2.2 Critical Behavior 5 2.3 Quantum Critical Point (QCP) 8 2.3.1 Belitz-Kirkpatrick-Vojta theory (BKV) 11 2.4 Spin Glass 13 3 Experiment Method 17 3.1 Vacuum Arc Melting 18 3.2 X-ray Diffraction 20 3.2.1 Electron Probe Microanalyzer (EPMA) 23 3.3 Physical Properties Measurement System 26 3.3.1 Resistivity Measurement 26 3.3.2 Specific Heat Measurement 28 3.4 Magnetic properties measurement system 3 31 3.4.1 Vibrating Sample Magnetometer (VSM) 31 3.4.2 Superconducting Quantum Interference Device 32 4 Result and Data Analysis 35 4.1 X-ray Diffraction and Result of EPMA 35 4.2 Resistivity 40 4.3 Specific Heat 42 4.4 Magnetic Measurement 45 4.4.1 Dc Susceptibility 45 4.4.2 Ac Susceptibility 52 4.4.3 Phase Diagram 55 5 Discussions 58 References 59

    [1] K. P. Gupta, C. H. Cheng, and Paul A. Beck. Low-temperature specific heat of Ni-base fcc solid solutions with Cu, Zn, Al, Si, and Sb. Phys. Rev., 133:A203–A206, 1964.
    [2] W. F. Brinkman, E. Bucher, H. J. Williams, and J. P. Maita. The magnetic susceptibility and specific heat of nearly ferromagnetic NiRh alloys. Journal of Applied Physics, 39(2):547–548, 1968.
    [3] F. Bo¨lling. Ferro- und paramagnetisches verhalten in den mischkristallen des nickels mit vanadium, rhodium und platin im temperaturbereich von 14◦ bis 1000◦k. Phys kondens Materie, 7:162–184, 1968.
    [4] I. P. Gregory and D. E. Moody. The low temperature specific heat and magnetization of binary alloys of nickel with titanium, vanadium, chromium and manganese. Journal of Physics F: Metal Physics, 5(1):36–44, 1975.
    [5] M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl. Non-Fermiliquid behavior at a ferromagnetic quantum critical point in Ni1−xPdx. Phys. Rev. Lett., 82:4268–4271, 1999.
    [6] S. Ubaid-Kassis, T. Vojta, and A. Schroeder. Quantum griffiths phase in the weak itinerant ferromagnetic alloy Ni1−xVx. Phys. Rev. Lett., 104:066402, 2010.
    [7] C.-L. Huang, A. M. Hallas, K. Grube, S. Kuntz, B. Spieß, K. Bayliff, T. Besara, T. Siegrist, Y. Cai, J. Beare, G. M. Luke, and E. Morosan. Quantum critical point in the itinerant ferromagnet Ni1−xRhx. Phys. Rev. Lett., 124:117203, 2020.
    [8] R.-Z. Lin and C.-L. Huang. Hyperscaling analysis of a disorder-induced ferromagnetic quantum critical point in Ni1−xRhx with x = 0.375. Phys. Rev. B, 105:024429, 2022.
    [9] G. Jaeger. The ehrenfest classification of phase transitions: Introduction and evolution. Archive for History of Exact Sciences, 53:51–58, 1998.
    [10] Stephen J. Blundell and Katherine M. Blundell. Concepts in Thermal Physics. Oxford University Press, 2009.
    [11] K. Huang. STATISTICAL MECHANICS, 2ND ED. Wiley India Pvt. Limited, 2008.
    [12] J.A. Mydosh. Spin Glasses:An Experimental Introduction. John Wiley and Sons Ltd, 1993.
    [13] A. Cheung. Phase Transitions and Collective Phenomena. Lecture Notes, 2011.
    [14] Subir Sachdev. Quantum phase transitions. Physics World, 12(4):33, 1999.
    [15] Stefan Kirchner, S. Paschen, Qiuyun Chen, Steffen Wirth, Donglai Feng, Joe Thompson, and Qimiao Si. Colloquium : Heavy-electron quantum criticality and single-particle spectroscopy. Reviews of Modern Physics, 92, 03 2020.
    [16] M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl. Non-fermiliquid behavior at a ferromagnetic quantum critical point in Ni1−xRhx. Phys. Rev. Lett., 82:4268–4271, 1999.
    [17] P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich. Magnetic-field induced quantum critical point in YbRh2Si2. Phys. Rev. Lett., 89:056402, 2002.
    [18] Hisashi Kotegawa, Valentin Taufour, Dai Aoki, Georg Knebel, and Jacques Flouquet. Evolution toward quantum critical end point in UGe2. Journal of the Physical Society of Japan, 80(8):083703, 2011.
    [19] D. Belitz, T. R. Kirkpatrick, and Thomas Vojta. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett., 82:4707– 4710, 1999.
    [20] D. Belitz, T. R. Kirkpatrick, and J¨org Rollb¨uhler. Tricritical behavior in itinerant quantum ferromagnets. Phys. Rev. Lett., 94:247205, 2005.
    [21] T. R. Kirkpatrick and D. Belitz. Exponent relations at quantum phase transitions with applications to metallic quantum ferromagnets. Phys. Rev. B, 91:214407, 2015.
    [22] Stephen Blundell. Magnetism in condensed matter. Oxford master series in condensed matter physics. Oxford University Press, Oxford, 2001.
    [23] C. A. M. Mulder, A. J. van Duyneveldt, and J. A. Mydosh. Susceptibility of the CuMn spin-glass: Frequency and field dependences. Phys. Rev. B, 23:1384–1396, 1981.
    [24] V. Cannella and J. A. Mydosh. Magnetic ordering in gold-iron alloys. Phys. Rev. B, 6:4220–4237, 1972.
    [25] C. Dekker, A. F. M. Arts, and H. W. de Wijn. Static critical behavior of the two-dimensional ising spin glass Rb2Cu1−xCoxF4. Phys. Rev. B, 38:8985–8991, 1988.
    [26] Daria Barsuk. Metallurgical Design of New Nanoporous Structures. PhD thesis, 2017.
    [27] Anthony R. West. Basic solid state chemistry. John Wiley and Sons Ltd, 1999.
    [28] Richard Wuhrer and K. Moran. A new life for the wavelength-dispersive x-ray spectrometer (wds): incorporation of a silicon drift detector into the wds for improved quantification and x-ray mapping. IOP Conference Series: Materials Science and Engineering., 304:012021, 2018.
    [29] P. Mangin and R. Kahn. Supeconducting Quantum Interference Device ”SQUID”. Springer, Cham., 2017.
    [30] Cameron F. Holder and Raymond E. Schaak. Tutorial on powder x-ray diffraction for characterizing nanoscale materials. ACS Nano, 13(7):7359–7365, 2019.
    [31] M.R Gennero de Chialvo and A.C Chialvo. Hydrogen evolution reaction on smooth Ni1−xMox alloys (0 ≤ x ≤ 0.25). Journal of Electroanalytical Chemistry, 448:87 ∼ 93, 1998.
    [32] Yoshinao Mishima, Shouichi Ochiai, and Tomoo Suzuki. Lattice parameters of Ni(γ), Ni3Al(γ’) and Ni3Ga(γ’) solid solutions with additions of transition and b-subgroup elements. Acta Metallurgica, 33(6):1161–1169, 1985.
    [33] Francis A. Shunk, Max Hansen, and IIT Research Institute. Constitution of binary alloys. Second supplement. McGraw-Hill, 1969.
    [34] M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick. Metallic quantum ferromagnets. Rev. Mod. Phys., 88:025006, 2016.
    [35] G. R. Stewart. Non-fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys., 73:797–855, 2001.
    [36] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar. Continuous quantum phase transitions. Rev. Mod. Phys., 69:315–333, 1997.
    [37] D. Fuchs, M. Wissinger, J. Schmalian, C.-L. Huang, R. Fromknecht, R. Schneider, and H. v. L¨ohneysen. Critical scaling analysis of the itinerant ferromagnet Sr1−xCaxRuO3. Phys. Rev. B, 89:174405, 2014.
    [38] C.L. Huang, D. Fuchs, M. Wissinger, R. Schneider, M.C. Ling, M.S. Scheurer, J. Schmalian, and H.v. L¨ohneysen. Anomalous quantum criticality in an itinerant ferromagnet. NatureCommunications, 6:8188, 2015.
    [39] J M Santiago, C-L Huang, and E Morosan. Itinerant magnetic metals. Journal of Physics: Condensed Matter, 29(37):373002, 2017.
    [40] Anthony Arrott. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 108:1394–1396, 1957.
    [41] Anthony Arrott and John E. Noakes. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett., 19:786–789, 1967.
    [42] S. N. Kaul. Static critical phenomena in ferromagnets with quenched disorder. Journal of Magnetism and Magnetic Materials, 53(1):5–53, 1985.
    [43] N. St¨usser, M. Th. Rekveldt, and T. Spruijt. Critical exponents, amplitudes, and correction to scaling in nickel measured by neutron depolarization. Phys. Rev. B, 33:6423–6427, 1986.
    [44] Subhradip Ghosh, Nityananda Das, and Abhijit Mookerjee. Magnetic properties of ni-mo single-crystal alloys; theory and experiment. Journal of Physics: Condensed Matter, 10(50):11773, 1998.
    [45] Georg Benka, Andreas Bauer, Philipp Schmakat, Steffen S¨aubert, Marc Seifert, Pau Jorba, and Christian Pfleiderer. Interplay of itinerant magnetism and spinglass behavior in FexCr1−x. Phys. Rev. Materials, 6:044407, 2022.
    [46] V. K. Anand, D. T. Adroja, and A. D. Hillier. Ferromagnetic cluster spin-glass behavior in P rRhSn3. Phys. Rev. B, 85:014418, 2012.
    [47] Almut Schroeder, Sara Ubaid-Kassis, and Thomas Vojta. Signatures of a quantum griffiths phase in a d-metal alloy close to its ferromagnetic quantum critical point. Journal of Physics: Condensed Matter, 23(9):094205, 2011.
    [48] A P Pikul. The influence of magnetic sublattice dilution on magnetic order in CeNiGe3 and UNiSi2. Journal of Physics: Condensed Matter, 24(27):276003, 2012.
    [49] H. v. L¨ohneysen, A. Rosch, M. Vojta, and P. W¨olfle. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 79:1015–1075, 2007.
    [50] R. K¨uchler, P. Gegenwart, F. Weickert, N. Oeschler, T. Cichorek, M. Nicklas, N. Carocca-Canales, C. Geibel, and F. Steglich. Thermal expansion and gr¨uneisen ratio near quantum critical points. Physica B: Condensed Matter, 378-380:36–39, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE