簡易檢索 / 詳目顯示

研究生: 吳俊杰
Wu, Jun Jie
論文名稱: 基於量子干涉的反向共振四波混頻研究
Backward resonant four-wave mixing by quantum interference
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: 四波混頻共振轉換效率41.3%
外文關鍵詞: Four-wave mixing, resonant, conversion efficiency 41.3%
相關次數: 點閱:96下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討基於量子干涉效應下的反向共振四波混頻的轉換效率。從推導四波混頻的理論中得知正向共振四波混頻在最好的條件下的最高轉換效率達25%,然而反向共振四波混頻的最高轉換效率在光學密度約250 時可達97%。本研究利用冷銣原子之N 型結構四能階系統來進行反共振四波混頻實驗,在固定耦合光光強為2.3 mW/cm2 及4.7 mW/cm2 下,藉由改變驅動光的拉比頻率來找尋最大轉換效率。實驗結果顯示在系統參數光學密度為48 及耦合光光強為2.3 mW/cm2 和驅動光光強為1.2 mW/cm2 下,轉換效率最高可達41.3%。此結果雖然尚未達到理論預測的最大轉換效
    率,但直接證實了反向共振四波混頻的轉換效率可突破正向共振四波混頻的最高效率25%。

    We report on an experimental observation of backward resonant four-wave mixing by quantum interference. We derive the theory of four wave mixing and confirm that the highest conversion efficiency of forward four-wave mixing is 25%. However, the highest conversion efficiency of backward resonant four-wave mixing can reach about 97% when optical density approaches to 250. In our research, we use N-type four energy levels system in cold rubidium
    atom to proceed backward resonant four-wave mixing experiments. By fixing the intensity of coupling light intensity at 2.3 mW/cm2 and 4.7 mW/cm2, we alter the Rabi frequency of driving light to search the highest conversion efficiency. The experimental result is that the conversion efficiency can reach 41.3% when systematic parameters are optical density equal to 48, coupling light intensity at 2.3 mW/cm2, and driving light intensity at 1.2 mW/cm2. Although this consequence dose not achieve the maximum conversion efficiency predicted
    by theoretical model, it approve that the conversion efficiency of resonant backward four-wave mixing can breakthrough the highest efficiency of resonant forward four-wave mixing, which is 25%.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 Chapter 2. Theoretical model 3 2.1. Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . 3 2.2. Four-wave mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1. Forward four-wave mixing . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2. Backward four-wave mixing . . . . . . . . . . . . . . . . . . . . . 11 2.3. Phase mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1. Phase mismatch in FFWM . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2. Phase mismatch in BFWM . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 3. Experimental system and setup 22 3.1. Cold atom system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1. Rubidium atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2. Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. Electromagnetically induced transparency System . . . . . . . . . . . . . . 26 3.3. Backward four-wave mixing system . . . . . . . . . . . . . . . . . . . . . 29 Chapter 4. Experimental result and discussion 32 4.1. Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . 32 4.2. Backward four-wave mixing . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1. Backward Four Wave Mixing at Ωc = 0:4Γ . . . . . . . . . . . . . 35 4.2.2. Backward four-wave mixing at Ωc = 0:56Γ . . . . . . . . . . . . . 40 4.2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 5. Conclusion and outlook 47 References 48 Appendix A. Another derivation of BFWM 50 Appendix B. Measuring beam size 53 Appendix C. The step of establishing BFWM experiment 55

    [1] Jean-Philippe Brantut, Charles Grenier, Jakob Meineke, David Stadler, Sebastian Krinner, Corinna Kollath, Tilman Esslinger, and Antoine Georges. A thermoelectric heat engine with ultracold atoms. Science, 342(6159):713–715, 2013.
    [2] Jean-Philippe Brantut, Jakob Meineke, David Stadler, Sebastian Krinner, and Tilman Esslinger. Conduction of ultracold fermions through a mesoscopic channel. Science,
    337(6098):1069–1071, 2012.
    [3] C.-K. Chiu. Studies on EIT-based four-wave mixing at Low light Levels. Mater’s thesis, National Cheng Kung University, 2013.
    [4] Chang-Kai Chiu, Yi-Hsin Chen, Yen-Chun Chen, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Low-light-level four-wave mixing by quantum interference. Phys. Rev. A, 89:023839, Feb 2014.
    [5] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Threedimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48–51, Jul 1985.
    [6] D. Deutsch. Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 400(1818):97–117, 1985.
    [7] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):467–488, 1982.
    [8] Crispin Gardiner and Peter Zoller. The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of Quantum Optics. Imperial College Press, London, 2014.
    [9] H. Haken. Theory of coherence of laser light. Phys. Rev. Lett., 13:329–331, Sep 1964.
    [10] H. Haken and H. Sauermann. Frequency shifts of laser modes in solid state and gaseous systems. Zeitschrift für Physik, 176(1):47–62, 1963.
    [11] H. Haken and H. Sauermann. Nonlinear interaction of laser modes. Zeitschrift für Physik, 173(3):261–275, 1963.
    [12] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically
    induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990.
    [13] S. E. Harris and Lene Vestergaard Hau. Nonlinear optics at low light levels. Phys. Rev. Lett., 82:4611–4614, Jun 1999.
    [14] Gregor Jotzu, Michael Messer, Remi Desbuquois, Martin Lebrat, Thomas Uehlinger, Daniel Greif, and Tilman Esslinger. Experimental realization of the topological haldane model with ultracold fermions. Nature, 515(7526):237–240, 2014.
    [15] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu. Backward four-wave mixing in a four-level medium with electromagnetically induced transparency. J. Opt. Soc. Am. B, 23(4):718–722, Apr 2006.
    [16] Sebastian Krinner, David Stadler, Dominik Husmann, Jean-Philippe Brantut, and Tilman Esslinger. Observation of quantized conductance in neutral matter. Nature,
    517(7532):64–67, 2015.
    [17] Willis E. Lamb. Theory of an optical maser. Phys. Rev., 134:A1429–A1450, Jun 1964.
    [18] Melvin Lax. Formal theory of quantum fluctuations from a driven state. Phys. Rev., 129:2342–2348, Mar 1963.
    [19] Meng-Jung Lee, Yi-Hsin Chen, I-Chung Wang, and Ite A. Yu. Eit-based all-optical switching and cross-phase modulation under the influence of four-wave mixing. Opt.
    Express, 20(10):11057–11063, May 2012.
    [20] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer. The a.c. and d.c. josephson effects in a bose-einstein condensate. Nature, 449(7162):579–583, 2007. 10.1038/nature06186.
    [21] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.-F. Chen. Large Cross-Phase Modulations at the Few-Photon Level. ArXiv e-prints, July 2016.
    [22] Hsiang-Yu Lo, Po-Ching Su, and Yong-Fan Chen. Low-light-level cross-phase modulation by quantum interference. Phys. Rev. A, 81:053829, May 2010.
    [23] N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Physical Review Letters, 106(3):038501, 2011. PRL.
    [24] Ulrich Schneider, Lucia Hackermuller, Jens Philipp Ronzheimer, Sebastian Will, Simon Braun, Thorsten Best, Immanuel Bloch, Eugene Demler, Stephan Mandt, David
    Rasch, and Achim Rosch. Fermionic transport and out-of-equilibrium dynamics in a homogeneous hubbard model with ultracold atoms. Nat Phys, 8(3):213–218, 2012. 10.1038/nphys2205.
    [25] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press, Cambridge, 1997.
    [26] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134, Nov 1994.
    [27] David Stadler, Sebastian Krinner, Jakob Meineke, Jean-Philippe Brantut, and Tilman Esslinger. Observing the drop of resistance in the flow of a superfluid fermi gas. Nature, 491(7426):736–739, 2012. 10.1038/nature11613.
    [28] B.-S. Yang. Electromagnetically induced transparency in a single Zeeman sublevel. Mater’s thesis, National Cheng Kung University, 2014.

    下載圖示 校內:2017-02-01公開
    校外:2017-02-01公開
    QR CODE