| 研究生: |
張簡琮淳 Chien, Tsung-Chun Chang |
|---|---|
| 論文名稱: |
以磁性人工纖毛對斑馬魚胚胎進行高精度之軸向旋轉操控 Axial Rotational Control of Zebrafish Larvae Using Artificial Cilia |
| 指導教授: |
陳嘉元
Chen, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 斑馬魚 、微流體裝置 、人工纖毛 、形狀記憶合金 、定位控制 |
| 外文關鍵詞: | Zebrafish, Microfluidics, Artificial cilia, Shape memory alloy, Orientation control |
| 相關次數: | 點閱:123 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
斑馬魚在生物醫學的研究領域上被視為是一種重要的脊椎動物模型,其原因是因為它們的屬性特別,例如,體型尺寸小、光學透明性 (即為胚胎身型透明)、生長速度快,且最重要的一點是與人類的基因相似性高之特性;除此之外,為了能更深入探討人類疾病以追蹤病源情形,許多仿人類主要疾病的斑馬魚模型也都被發展演示出了,諸如此類的優勢造成斑馬魚有助於在新藥的開發和遺傳基因的檢視之實驗研究的發展。然而,雖然有了這些優點,但是因為在斑馬魚胚胎的篩檢及成像過程中,還是缺乏一個方便且可靠的機制方法來操控胚胎以得到精細的視角,使得斑馬魚的研究範圍仍然受到了限制。在本論文中,將以仿生的人工纖毛運用於微流體裝置上,分別設計出壁面寬度為固定與壁面寬度可調控的微流道平台,藉由主動式之方法控制嵌入在微流道內的磁性人工纖毛做出擺動,使其由於與斑馬魚胚胎為直接接觸因而可致動胚胎,導致胚胎產生軸向旋轉運動的效果,透過此方式能夠提供精準的0到20度步進式軸向旋轉之定位控制,此外,在壁面寬度可調控的微流道平台裡,利用控制系統驅動形狀記憶合金的相變特性而產生壁面移動,使得微流道寬度可因應早期胚胎體型的快速變化以進行旋轉測試。藉由所呈現的方式可以對授精後1到9天的胚胎進行長時間之定位控制以輔助檢視成像,另外,與傳統的方法相較之下,明顯的降低對斑馬魚胚胎的傷害影響,其生物活性與正常生長的胚胎並沒有顯著差異,因此證實了所提出結合控制系統與微流道平台的檢視裝置,在生醫研究執行斑馬魚胚胎篩檢的過程中,是有助於提升胚胎控制取向的便利性以及檢視成像的解析度,更能降低實驗檢測所需的時程。
Zebrafish has been recognized as an important vertebrate model in biomedicine chapter because of their significant attributes and advantageous characteristics that helps to discovery, development of new drugs and genetic screening. However, the range of studying zebrafish is still restricted because of lack a convenience and reliable method to manipulate zebrafish for observing artful view during screening. In this work, two kinds of microfluidic channel with a series of magnetically actuated artificial cilia embedded within has been proposed for the micromanipulation of zebrafish larvae. The microfluidic channel can accommodate larvae from 1-day post-fertilization (d.p.f.) to 9 d.p.f. meanwhile an axial orientation control in a range between 0 to 20 degrees were achieved. Through these platforms stepwise orientation control procedures with high accuracy can be performed that can facilitate time-lapse imaging during zebrafish larvae related experiments. Therefore, these presented platforms with control module which is a promising and advantageous technique to promote the scale of using microfluidics for zebrafish studies during screening in pharmaceutical industry.
[1] C. Y. Chen and C. M. Cheng, (2014). "Microfluidics expands the zebrafish potentials in pharmaceutically relevant screening," Advanced healthcare materials, vol. 3, pp. 940-945.
[2] O. J. Tamplin and L. I. Zon, (2010). "Fishing at the cellular level," Nature methods, vol. 7, pp. 600-601.
[3] T. Y. Chang, C. Pardo-Martin, A. Allalou, C. Wählby, and M. F. Yanik, (2012). "Fully automated cellular-resolution vertebrate screening platform with parallel animal processing," Lab on a chip, vol. 12, pp. 711-716.
[4] C. Y. Chen, M. J. Patrick, P. Corti, W. Kowalski, B. L. Roman, and K. Pekkan, (2011). "Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV," Biorheology, vol. 48, pp. 305-321.
[5] F. Pinto-Teixeira, M. Muzzopappa, J. Swoger, A. Mineo, J. Sharpe, and H. López-Schier, (2013). "Intravital imaging of hair-cell development and regeneration in the zebrafish," Frontiers in neuroanatomy, vol. 7, pp. 00033.
[6] E. M. Wielhouwer, S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, et al., (2011). "Zebrafish embryo development in a microfluidic flow-through system," Lab on a chip, vol. 11, pp. 1815-1824.
[7] C. Pardo-Martin, T. Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, (2010). "High-throughput in vivo vertebrate screening," Nature methods, vol. 7, pp. 634-636.
[8] D. Choudhury, D. V. Noort, C. Iliescu, B. Zheng, K. L. Poon, S. Korzh, et al., (2012). "Fish and chips: a microfluidic perfusion platform for monitoring zebrafish development," Lab on a chip, vol. 12, pp. 892-900.
[9] A. Funfak, A. Brösing, M. Brand, and J. M. Köhler, (2007). "Micro fluid segment technique for screening and development studies on danio rerio embryos," Lab on a chip, vol. 7, pp. 1132-1138.
[10] L. L. Bischel, B. R. Mader, J. M. Green, A. Huttenlocher, and D. J. Beebe, (2013). "Zebrafish entrapment by restriction array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging," Lab on a chip, vol. 13, pp. 1732-1736.
[11] X. Lin, S. Wang, X. Yu, Z. Liu, F. Wang, W. T. Li, et al., (2015). "High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates," Lab on a chip, vol. 15, pp. 680-689.
[12] W. Wang, X. Liu, D. Gelinas, B. Ciruna, and Y. Sun, (2007). "A fully automated robotic system for microinjection of zebrafish embryos," Plos one, vol. 2, pp. 0000862.
[13] A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, (2012). "Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope," Development, vol. 139, pp. 3242-3247.
[14] M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, (2007). "Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae," BMC biotechnology, vol. 7, pp. 40.
[15] A. Mata, A. J. Fleischman, and S. Roy, (2005). "Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems," Biomedical microdevices, vol. 7, pp. 281-293.
[16] Y. Xia and G. M. Whitesides, (1998). "Soft lithography," Annual review of materials science, vol. 28, pp. 153-184.
[17] M. H. Wu, (2002). "Fabrication of nitinol materials and components," Materials science forum, vol. 394, pp. 285-292.
[18] M. Barr, (2001). "Pulse width modulation," Embedded systems programming, vol. 14, pp. 103-104.
[19] T. L. Hedrick, (2008). "Software techniques for two-and three-dimensional kinematic measurements of biological and biomimetic systems," Bioinspiration and biomimetics, vol. 3, pp. 034001.
[20] D. Brown, (2013). "Sharing video experiments with tracker digital libraries," in Proceedings AAPT winter seminar 2013.
[21] C. Y. Chen, R. Antón, M. Y. Hung, P. Menon, E. A. Finol, and K. Pekkan, (2014). "Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling," Journal of biomechanical engineering, vol. 136, pp. 031001.
[22] S. Grillitsch, N. Medgyesy, T. Schwerte, and B. Pelster, (2005). "The influence of environmental PO2 on hemoglobin oxygen saturation in developing zebrafish danio rerio," Journal of experimental biology, vol. 208, pp. 309-316.
[23] E. D. Luca, G. M. Zaccaria, M. Hadhoud, G. Rizzo, R. Ponzini, U. Morbiducci, et al., (2014). "Zebrabeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos," Scientific reports, vol. 4, pp. 04898.
[24] K. Mani, T. C. Chang-Chien, B. Panigrahi, and C. Y. Chen, "Manipulation of zebrafish's orientation using artificial cilia in a microchannel with actively adaptive wall design," (Under review).
[25] C. Y. Chen, T. C. Chang-Chien, K. Mani, and H. Y. Tsai, (2016). "Axial orientation control of zebrafish larvae using artificial cilia," Microfluidics and nanofluidics, vol. 20, pp. 1-9.