簡易檢索 / 詳目顯示

研究生: 陳建佑
Chen, Jian-Yo
論文名稱: 自由端具一集結質量之軸向移動及自旋樑的振動分析
Vibration Analysis of an Axially Moving and Spinning Beam with a Tip Mass
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 自由端質量穩定性軸向移動樑有限元素法
外文關鍵詞: stability, tip mass, finite element method, axially moving beam
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究自由端具一集結質量之軸向移動及自旋懸臂樑的動態特性,並探討等速率伸長及週期性來回伸縮之兩種軸向移動型態對懸臂樑之動態特性的影響。首先,我們以考慮旋轉慣性的雷利樑(Rayleigh beam)理論為基礎,利用漢彌頓原理(Hamilton's principle)及具時變元素和非時變元素之有限元素法推導出系統之運動方程式。利用阮奇-庫達(Runge-Kutta)數值積分方法解出系統之振動響應,並討論質量塊之質量及轉動慣量對系統的頻率與響應的影響;並分別使用特徵值及傅羅凱理論(Floquet theory)來判別具軸向等速率伸長及週期性來回伸縮運動型態之軸向移動樑的穩定性,並由位移響應的分析結果來確認穩定性分析的正確性。

    In this thesis, the dynamic characteristics of an axially moving and spinning Rayleigh beam with a tip mass is investigated. Two kinds of axial motion including constant-speed extension deployment and back-and-forth periodical motion are considered. Variable-domain finite-element models for the above system are developed by using Hamilton's principle for determination of natural frequencies, transient responses and stability. Direct time numerical integration, based on a Runge-Kutta algorithm, is used to perform the dynamic analysis. Influences of the tip mass on the natural frequency and dynamic response of the beam are discussed. For stability analysis, eigenvalues of motion equation of the beam with constant-speed axial extension deployment are obtained to determine its stability, while Floquet theory is employed to investigate the stability of the beam with back-and-forth periodical axially motion. Time histories are obtained to confirm the results from Floquet theory.

    目 錄 摘要 i 英文摘要 ii 誌謝 iii 表目錄 vi 圖目錄 vii 符號說明 vii 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3本文研究 5 第二章 運動方程式推導 7 2-1分析模型與基本假設 7 2-2軸向移動及自旋樑的位移場及機械能 8 2-3有限元素法 9 2-3.1軸向移動及自旋樑的拉格蘭治(Lagrangian)表示式 12 2-3.2軸向移動及自旋樑的運動方程式 14 2-4自由端具一集結質量之樑的運動方程式 16 第三章 穩定性分析 18 3-1軸向等速率伸長運動之樑的穩定性分析 18 3-2週期性來回伸縮之軸向移動樑的穩定性分析 19 第四章 數值模擬結果與討論 21 4-1準確性分析 21 4-2軸向等速率運動之樑 23 4-2.1含比例阻尼的振動分析 23 4-2.2不同伸縮速度之軸向移動樑的振動特性 24 4-2.3自由端質量對響應的影響 25 4-3穩定性分析結果與討論 26 4-3.1軸向等速率伸長運動之樑的穩定性分析 27 4-3.2軸向等速率及自旋運動之樑的穩定性 28 4-3.3週期性軸向運動之樑的穩定性 29 第五章 結論 31 參 考 文 獻 32 附錄A 36 自述 76

    1.Elmaraghy, R. and Tabarrok, B., “On the Dynamic Stability of anAxially Oscillating Beam”, Journal of the Franklin Institute 300, 25-39 (1975).
    2.Wickert, J. A. and Mote, C. D., Jr., “Current Research on Vibration and Stability of Axially-moving Materials”, The Shock and Vibration Digest 20, 3-13 (1988).
    3.Meirovitch, L. Analytical Methods in Vibrations, Macmillan Com- pany, London (1967).
    4.Clough, R. W. and Penzien, J. Dynamics of Structures, Second Edition, Mc- Graw-Hill, Inc., (1993).
    5.Laura, P. A. A., Pombo, J. L. and Susemihl, E. A. “A Note on the Vibration of a Clamped-free Beam with a Mass at the Free End”, Journal of Sound and Vibration 37, 161-168 (1974).
    6.Laura, P. A. A., Maurizi, M. J. and Pombo, J. L. “A Note on the Dynamic Analysis of an Elastically Restrained-free Beam with a Mass at the Free End”, Journal of Sound and Vibration 41, 397-405 (1975).
    7.Chubachi, T., “Lateral Vibration of Axially Moving Wire or Belt Form Materials”, Bulletin of the Japan Society of Mechanical Engineers 1, 24-29 (1958).
    8.Barakat, R., “Transverse Vibrations of a Moving Rod”, Journal of the Acoustical Society of America 43, 533-539 (1967).
    9.Simpson, A., “Transverse Modes and Frequencies of Beams Translating between Fixed End Supports”, Journal of Mechanical Engineering Science 15, 159-164 (1973).
    10.Nelson, H. D. and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements”, Journal of Engineeringfor Industry 98, 593-600 (1976).
    11.Chonan, S., “Steady State Response of an Axially Moving Strip Subjected to a Stationary Lateral Load”, Journal of Sound and Vibration 107, 155-165 (1986).
    12.Fung, R. F., Lu, P. Y. and Tseng, C. C., “Non-linearly Dynamic Modeling of an Axially Moving Beam with a Tip Mass”, Journal of Sound and Vibration 218, 559-571 (1998).
    13.Pakdemirli, M. and Batan, H., “Dynamic Stability of a Constantly Accelerating Strip”, Journal of Sound and Vibration 168, 371-378 (1993).
    14.Stylianou, M. and Tabarrok, B., “Finite Element Analysis of an Axially Moving Beam, Part I: Time Integration”, Journal of Sound and Vibration 178, 433-453 (1994).
    15.Stylianou, M. and Tabarrok, B., “Finite Element Analysis of an Axially Moving Beam, Part II: Stability Analysis”, Journal of Sound and Vibration 178, 455-481 (1994).
    16.Al-Bedoor, B. O. and Khulief, Y. A., “An Approximated Analytical Solution of Beam Vibrations during Axial Motion”, Journal of Sound and Vibration 192, 159-171 (1996).
    17.Lee, H. P., “Vibrations of a Pretwisted Spinning and Axially Moving Beam”, Computers and Structures 52, 595-601 (1994).
    18.Lee, H. P., “Flexural Vibration of an Orthotropic Rotating Shaft Moving over Supports”, Journal of Sound and Vibration 179, 347-357 (1995).
    19.Lee, H. P., “Stability of a Cantilever Beam with Tip Mass Subject to Axial Sinusoidal Excitation”, Journal of Sound and Vibration 183, 91-98 (1995).
    20.Nayfeh, A. H. and Mook, D.T. Nonlinear Oscillations, Wiley, New York (1979).
    21.Oz, H. R., Pakdemirli, M. and Boyaci, H., “Non-linear Vibrations and Stability of Axially Moving Beam with Time-dependent Velocity”, International Journal of Non-Linear Mechanics 36, 107-115 (2001).
    22.Ozkaya, E. and Oz, H. R., “Determination of Natural Frequencies and Stability Regions of Axially Moving Beams Using Artificial Neural Networks Method”, Journal of Sound and Vibration 252, 782-789 (2002).
    23.Chen, L. Q., Yang, X. D. and Cheng, C. J., “Dynamic Stability of an Axially Accelerating Viscoelastic Beam”, European Journal of Mechanics A/Solids 23, 659-666 (2004).
    24.林暐智, 軸向移動系統動態特性之研究, 國立成功大學航空太空工程研究所博士論文, (2007).

    下載圖示 校內:2014-08-19公開
    校外:2014-08-19公開
    QR CODE