| 研究生: |
胡澔剛 Hu, Benjamin |
|---|---|
| 論文名稱: |
號誌化環狀道路下的有效車流分析與計算 Computing effective flow rates for a signalized ring road |
| 指導教授: |
劉育佑
Liu, Yu-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 不連續介面的 Godunov 數值方法 、LWR 交通流模型 、Greenshield 車流模型 、有效車流 |
| 外文關鍵詞: | Discontinuous Godunov scheme, LWR model, Greenshield, Effective flow rates |
| 相關次數: | 點閱:92 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提供一個數值方法來求解一個在介面處有斷點並且符合守恆律的不連續流體,並且應用於交通流量模型來處理受干擾的車流,特別是受號誌影響的情況下。此數值方法是在Godunov 數值方法的架構下,對介面處做些特別的處理。
接著根據此數值方法做些交通相關的數值模擬並跟解析解做比較。最後將此應用於以 Greenshield 模型模擬車流並設有號誌的環狀道路中,然後分析此結果。
In this research, a novel numerical scheme is proposed to solve the problem of conservation laws with discontinuous interface and the proposed scheme is then applied to solve the Lighthill, Whitham and Richards (LWR) model under interrupted flows, especially flows influenced by the signals. The proposed scheme is constructed based on the Godunov’s scheme with special treatment at interfaces.
The proposed scheme is then illustrated and evaluated through different numerical experiments and the numerical results are compared with those obtained from analytical models.
Then the proposed scheme is applied to solve the problem of the LWR model with signals in the ring road under the assumption of the Greenshield function.
[1] Adimurthi, Jérôme Jaffré, and G. D. Veerappa Gowda. Godunovtype methods for conservation laws with a flux function discontinuous in space. SIAM Journal on Numerical Analysis, 42(1):179–208, 2005.
[2] WenLong Jin and Yifeng Yu. Performance analysis and signal design for a stationary signalized ring road. https://arxiv.org/abs/1510.01216, 2015.
[3] Randall J. LeVeque. Godunov’s Method, pages 136–145. Birkhäuser Basel, Basel, 1990.
[4] S. Mishra. Chapter 18 numerical methods for conservation laws with discontinuous coefficients. In Rémi Abgrall and ChiWang Shu, editors, Handbook of Numerical Methods for Hyperbolic Problems, volume 18 of Handbook of Numerical Analysis, pages 479 – 506. Elsevier, 2017.
[5] G.F. Newell. A simplified theory of kinematic waves in highway traffic, part i: General theory. Transportation Research Part B: Methodological, 27(4):281 – 287, 1993.