| 研究生: |
江宏鑫 Chaing, Hung-Hsin |
|---|---|
| 論文名稱: |
於EPON/WiMAX整合型網路上使用固定時間框架的動態頻寬分配之時間延遲分析 Mean Packet Delay Analysis of Frame-based Bandwidth Allocation in an Integrated EPON/WiMAX Network |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | EPON 、WiMAX 、EPON/WiMAX整合型網路 、動態頻寬分配 、M/G/1排隊理論模型 |
| 外文關鍵詞: | EPON, WiMAX, Integrated EPON/WiMAX Access Networks, Dynamic Bandwidth Allocation, M/G/1 Queueing Model |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於EPON/WiMAX整合型網路結合乙太被動式光纖網路以及全球互通微波存取網路各自的優點,如高頻寬、低維護成本和行動性,因此可以提供網路使用者在任何時間和任何地點與網路同步的好處,使得EPON/WiMAX整合型網路在下一代接取網路中已成為一個具有潛力的網路架構。然而,EPON和WiMAX這兩種不同網路類型都有各自的傳輸模式,所以如何在兩種不同的網路類型之間,有效地利用現有的上傳頻寬提供給使用者是目前亟欲解決的問題之ㄧ。因此,目前已有數篇針對EPON/WiMAX整合型網路之動態頻寬分配演算法提出,其中固定時間框架之動態頻寬分配輪詢機制不僅可以支援異質性資料的傳輸並且可將現有上傳頻寬有效地分配在EPON和WiMAX網路之中。此動態頻寬分配輪詢機制採用固定時間框架的方法,意即將時間同步切割成多個連續時框。在每個時間框架裡,不僅保證兩種不同網路類型的資料可以獲得足夠的上傳頻寬進行傳送之外,亦可達到最大網路頻寬使用效率。本碩士論文基於此,欲針對固定時間框架之動態頻寬分配輪詢機制提出一個M/G/1排隊理論模型分析架構去評估分析此動態頻寬分配演算法的平均封包延遲時間,並藉由所提出的數學分析模型去驗證固定時間框架之動態頻寬分配輪詢機制之可行性及正確性,證明在EPON/WiMAX整合型網路上採取固定時間框架之動態頻寬分配輪詢機制可提供最好的網路效能。最後,藉由一系列的電腦模擬去驗證所提出分析架構的
正確性和準確性,透過模擬結果可發現使用此數學架構所預估的延遲時間和電腦模擬執行出來的結果互相吻合。
The integrated EPON/WiMAX access networks combine the complementary advantages of EPON and WiMAX access networks, such as high bandwidth, low maintenance cost and mobility. Thus, it can provide the end users to achieve “anytime” and “anywhere” to access the internet. This is the reason why the integrated EPON/WiMAX access networks have been regarded as the potential network architecture for the next generation access networks. However, before deploying the integrated EPON/WiMAX access network, the effective bandwidth allocation between the heterogeneous networks remains an important problem to be resolved. Several Dynamic Bandwidth Allocation (DBA) schemes have been proposed to solve the problem to allocate bandwidth effectively in this network. Among these DBA schemes, the Frame-Based DBA (FB-DBA) scheme has been shown to effectively and dynamically allocate bandwidth to support a seamless integration of the EPON and WiMAX access networks. FB-DBA adopts a framed approach, in which the time domains of EPON and WiMAX access networks are synchronously partitioned to successive frames with a fixed length. Within each frame of EPON and WiMAX domains, heterogeneous traffic is guaranteed of sufficient network resource for transmissions while maximizing the bandwidth utilization. The thesis developed an M/G/1 queueing model to analyze the mean packet delay of the FB-DBA scheme. The correctness and accuracy of the proposed analytical model is verified by performing a series of computer simulations. The analytical results derived by using this model for the mean packet delay is found to be in a good agreement with those obtained from computer simulations.
[1] A. R. Dhaini, P. H. Ho, X. Jiang, “WiMAX-VPON: A Framework of Layer-2 VPNs for Next-Generation Access Networks,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 2, Issue 7, pp. 400-414, July 2010.
[2] A. R. Dhaini, P. H. Ho, X. Jiang, ”Qos Control for Guaranteed Service Bundles Over Fiber-Wireless(FiWi) Broadband Access Networks,” IEEE/OSA Journal of Lightwave Technology, Vol. 29, No. 10, pp. 1500-1513 , May 2011.
[3] Alloptic, “Ethernet Passive Optical Networks,” The International Engineering Consortium, http://www.iec.org.
[4] B. Jung, J. Y. Choi, Y. T. Han, M. G. Kim, M. Kang “Centralized Scheduling Mechanism for Enhanced End-to-End Delay and QoS Support in Integrated Architecture of EPON and WiMAX,” IEEE/OSA Journal of Lightwave Technology, Vol. 28, Issue 16, pp. 2277-2288, April 2010.
[5] B. O. Obele, M. Iftikhar, S. Manipornsut, M. Kang, “Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON, ” IEEE/OSA Journal of Optical Communications and Networking, Vol. 1, No. 4, pp. 259–273, September 2009.
[6] C. Cicconetti, A. Erta, L. Lenzini, E. Mingozzi, “Performance Evaluation of the IEEE 802.16 MAC for QoS Support,” IEEE Transactions on Mobile Computing, Vol. 6, Issue 1, pp. 26-38, January 2007.
[7] C. Eklund, R. Marks, K. Stanwood, S. Wang, “IEEE Standard 802.16: A Technical Overview of the Wireless MAN Air Interface for Broadband Wireless Access,” IEEE Communication Magazine, Vol. 40, Issue 6, pp. 98-107, June 2002.
[8] C. M. Assi, Y. Ye, S. Dixit, M. Ali, “Dynamic Bandwidth Allocation for Quality of Service over Ethernet PONs,” IEEE Journal on Selected Areas in Communication, Vol. 3, Issue 9, pp.1467-1477, November 2003.
[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for Differentiated Services,” Internet Engineering Task Force, RFC 2475, Tech. Rep., December 1998.
[10] D. P. Bertsekas, R. G. Gallager, Data Networks, 2nd ed. EnglewoodCliffs, NJ: Prentice-Hall, 1992.
[11] G. Kramer, B. Mukherjee, G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Communication Magazine, Vol. 40, Issue 2, pp. 74-80, February 2002.
[12] G. Shen, R. S. Tucker, C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Communication Magazine, Vol. 45, Issue 8, pp. 44-50, August 2007.
[13] G. Pesavento, G. Kramer, “Enabling Next Generation Ethernet Access with Ethernet Passive Optical Networks,” National Fiber Optic Engineers. Conference, pp. 491-499, Orlando, September 2003.
[14] G. Kramer, G. Pesavento, “Ethernet Passive Optical Network (EPON) : Building a Next-Generation Optical Access Network,” IEEE Communication Magazine, Vol.40, pp. 66-73, February 2002.
[15] H. T. Lin, C. L. Lai, Y. C. Huang, "Dynamic Bandwidth Allocation with QoS Support FOR Integrated EPON/WiMAX Networks," IEEE HIGH Performance Switching and Routing, July 2013.
[16] IEEE 802.16-2004, IEEE Standard for Local and Metropolitan Area Network-Air Interface for Fixed Broadband Wireless Access Systems (part 16), October 2004.
[17] IEEE Standard 802.16 Working Group, IEEE 802.16e-2005 Standard for Local and Metropolitan Area Networks: Air Interface for Fixed Broadband Wireless Access Systems-Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. December 2005.
[18] K. Yang, S. Ou, K. Guild, H. H. Chen, “Convergence of Ethernet PON and IEEE 802.16 Broadband Access Network and Its QoS-Aware Dynamic Bandwidth Allocation Scheme,” IEEE Journal on Selected Areas in Communication, Vol. 27, Issue 2, pp. 101-116, February 2009.
[19] M. Milosavljevic, P. Thakur, P. Kourtessis, J. E. Mitchell, J. M. Senior, “Demonstration of Wireless Backhauling Over Long-Reach PONs,” IEEE/OSA Journal of Lightwave Technology, Vol. 30, pp. 811-817, No 5, March 2012.
[20] N. Correia, J. Coimbra, G. Schutz, “Fault-Tolerance Planning in Multiradio Hybrid Wireless-Optical Broadband Access Networks,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 1, Issue 7, pp. 645-654, December 2009.
[21] N. Ghazisaidi, M. Maier, “Fiber-Wireless(FiWi) Access Networks: Challenges and Opportunities,” IEEE Network, Vol.25, Issue 1, pp. 36-42, January/February 2011.
[22] N. F. Huang, C. P. Wang, C. A. Su, “A Hierarchical HFC Network with QoS Guaranteed Traffic Policy,” IEEE Transactions on Broadcasting, Vol. 44, Issue 4, pp. 517-526, December 1998.
[23] P. Chowdhury, B. Mukherjee, S. Sarkar, G. Kramer, S. Dixit, “Hybrid Wireless-Optical Broadband Access Network(WOBAN):Prototype Development and Research Challenges,” IEEE Network, Vol. 23, Issue 3, pp. 41-48, May/June 2009.
[24] S. Saker, S, Dixit, B. Mukherjee, “Hybrid Wireless-Optical Broadband Access Network (WOBAN): Network Planning and Setup,” IEEE Journal on Selected Areas in Communication, Vol. 26, Issue 6, pp. 12-21, August 2008.
[25] S. Sarkar, H. Yen, S. Dixit,B. Mukherjee, “Hybrid Wireless-Optical Broadband Access Network(WOBAN): A Review of Relevant Challenges,” IEEE Journal on Selected Areas in Communication , Vol. 26, Issue 6, pp. 12-21, August 2008.
[26] S. Sarkar, H.Yen, S. Dixit, B. Mukherjee, “A Novel Delay-Aware Routing Algorithm (DARA) for a Hybrid Wireless-Optical Broadband Access Network (WOBAN),” IEEE Network, Vol. 22, Issue 3, pp. 20-28, May 2008.
[27] S. Bharati, P. Saengudomlert, “Analysis of Mean Packet Delay for Dynamic Bandwidth Allocation Algorithms in EPONs,” IEEE/OSA Journal of Lightwave Technology, Vol. 28, No. 23, pp. 3454-3462, December 2010.
[28] Y. Yan, H. Yu, H. Wang, L. Dittmann, “Integration of EPON and WiMAX Networks: Uplink Scheduler Design,” Society for Photo-Instrumentation and Engineering Vol. 7137, October. 2008.