簡易檢索 / 詳目顯示

研究生: 黃柏凱
Huang, Po-Kai
論文名稱: 具可見光屏蔽特性之矽基場效二極體與薄膜電晶體紫外光檢測器光電特性之模擬分析
Simulation of Photoelectric Characteristics of Silicon Based Field Effect Diodes and Thin Film Transistors Used for Visible Blind Ultraviolet Photodetectors
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 121
中文關鍵詞: 可見光屏蔽極薄通道矽紫外光檢測器Sentaurus TCAD模擬場效二極體薄膜電晶體覆蓋層
外文關鍵詞: Visible blind, Silicon UV-PDs, Sentaurus TCAD, Field effect diode, Capping layer
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract IV 誌謝 XIII 目錄 XV 表目錄 XIX 圖目錄 XXII 第1章 緒論 1 1-1 紫外光檢測器(UV-PDs)之介紹與發展 1 1-1-1 pn光二極體之操作原理 4 1-1-2 光電晶體之操作原理 6 1-1-3 矽(Si)與寬能隙(WBG)半導體UV-PDs發展概述 8 1-1-4 覆蓋層(CL)結構於UV-PDs之應用 11 1-2 場效二極體(FED)之介紹與發展 14 1-3 研究動機 17 1-4 論文架構 19 第2章 理論背景與元件操作機制 20 2-1 薄膜電晶體(TFT)之操作原理 20 2-1-1 TFT通道全空乏條件 20 2-1-2 TFT操作區域與電流-電壓關係 22 2-1-3 TFT於照光條件下之行為 26 2-2 場效二極體(FED)之操作原理 28 2-2-1 順向場效二極體(Forward FED, F-FED) 28 2-2-2 反向場效二極體(Backward FED, B-FED) 34 2-3 閘極漏電流機制探討 40 2-3-1 傅勒-諾得翰(Fowler–Nordheim, F-N)穿隧電流 41 2-3-2 陷阱輔助穿隧(Trap-assisted tunneling, TAT)電流 41 2-3-3 熱發射(Thermionic emission, TE)電流 41 2-3-4 普爾-弗倫克爾(Poole-Frenkel, P-F)發射電流 42 2-4 覆蓋層(CL)之設計理念與機制 44 2-4-1 金屬材料覆蓋層 44 2-4-2 異型材料覆蓋層 46 2-5 元件光電特性參數萃取 48 2-5-1 電特性參數萃取 48 2-5-2 光響應特性參數萃取 51 第3章 元件結構設計與模擬工具及物理模型 55 3-1 Si UV-PDs元件結構設計規劃 55 3-2 Si UV-PDs元件製程規劃 59 3-3 元件模擬分析之工具及物理模型 61 第4章 Si FED與Si TFT UV-PDs之模擬分析 63 4-1 通道厚度於元件光電特性影響 64 4-1-1 通道厚度於元件電特性影響探討 64 4-1-2 通道厚度於元件光響應特性影響探討 67 4-2 通道摻雜濃度於元件光電特性影響 71 4-2-1 通道摻雜濃度於元件電特性影響探討 71 4-2-2 通道摻雜濃度於元件光響應特性影響探討 73 4-3 閘極功函數於元件光電特性影響 77 4-3-1 閘極功函數於元件電特性影響探討 77 4-3-2 閘極功函數於元件光響應特性影響探討 79 4-4 Si FED與Si TFT UV-PDs光電特性分析及比較 83 4-4-1 元件結構參數最佳化探討 83 4-4-2 Si FEDs與Si TFTs電特性比較 85 4-4-3 Si FED與Si TFT UV-PDs光響應特性比較 85 第5章 具CL結構之Si FED與Si TFT UV-PDs之模擬分析 87 5-1 p-Si CL於元件電特性影響探討 87 5-1-1 p-Si CL結構參數於元件電特性影響 87 5-1-2 具p-Si CL結構元件光響應特性分析 93 5-2 蕭基金屬CL於元件電特性影響探討 101 5-2-1 蕭基金屬CL結構參數於元件電特性影響 101 5-2-2 具蕭基金屬CL結構元件光響應特性分析 104 5-3 具CL結構Si FED與Si TFT UV-PDs光電特性分析及比較 107 5-4 動態光響應行為 110 第6章 結論及對未來研究之建議 111 6-1 結論 111 6-2 未來研究之建議 113 參考文獻 114

    [1] K. Wilhelm, "Past and recent observations of the solar upper atmosphere at vacuum-ultraviolet wavelengths, " J. Atmos. Sol. Terr. Phys. 65, 167–189 (2003).
    [2] E. Monroy, F. Omnès, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors, " Semicond. Sci. Technol. 18(4), R33–R51 (2003).
    [3] "Definitions of solar irradiance spectral categories," https://www.acttr.com/images/pdf/ISO_DIS_21348.pdf.
    [4] "The light Spectrum," https://www2.gov.bc.ca/gov/content/health /keeping-bc-healthy-safe/radiation/ultraviolet-uv-radiation.
    [5] L. Shi, and S. Nihtianov, "Comparative Study of Silicon-Based Ultraviolet Photodetectors," IEEE 12(7), 2453–2459 (2012).
    [6] W. Grundfest, "Overview of medical applications and cardiovascular intervention," Proc. Quantum Electron. Laser Sci. Conf., 375-376 (1999).
    [7] G. Knight, "Monitoring of ultraviolet light sources for water disinfection," IEEE 2, 1016–1018 (2004).
    [8] P. E. Malinowski, J. Y. Duboz, P. D. Moor, J. John, K. Minoglou, P. Srivastava et al., "10 µm pixel-to-pixel pitch hybrid backside illuminated AlGaN-on-Si imagers for solar blind EUV radiation detection," IEEE, 14.5.1–14.5.4 (2010).
    [9] E. Monroy, F. Calle, J.L. Pau, E. Muñoz, F. Omnès, B. Beaumont et al., "AlGaN-based UV photodetectors," J. Cryst. Growth 230, 537–543 (2001).
    [10] L. Sang, M. Liao, and M. Sumiya, "A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures," MDPI 13(8), 10482–10518 (2013).
    [11] E. Muñoz, E. Monroy, J.L. Pau, F. Calle, F. Omnès, and P. Gibart, "III nitrides and UV detection," J. Phys.-Condes. Matter 13(32), 7115–7137 (2001).
    [12] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., Wiley Interscience, 2006.
    [13] D. A. Neamen, Semiconductor Physics and Devices, 4th Ed., McGraw-Hill, 2012.
    [14] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho et al., "Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process," Sci. Rep. 6(1), 31991 (2016).
    [15] K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, "Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime, " IEEE 29(10), 1124–1127 (2008).
    [16] P. Kostov, K. Schneider-Hornstein, and H. Zimmermann, "Phototransistors for CMOS Optoelectronic Integrated Circuits," Sens. Actuator A-Phys. 172(1), 140–147 (2011).
    [17] T. E. Hansen, "Silicon UV-Photodiodes Using Natural Inversion Layers," Phys. Scr. 18(6), 471–475 (1978).
    [18] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, "Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes," Jpn. J. Appl. Phys. 39, 387–389 (2000).
    [19] M.-H. Ji, J. Kim, T. Detchprohm, R. D. Dupuis, A. K. Sood, N. K. Dhar et al., "Uniform and Reliable GaN p-i-n Ultraviolet Avalanche Photodiode Arrays," IEEE Photon Technol. Lett. 28(19), 2015–2018 (2016).
    [20] S. Yang, D. Zhou, H. Lu, D. Chen, F. Ren, R. Zhang et al., "High-Performance 4H-SiC p-i-n Ultraviolet Photodiode With p Layer Formed by Al Implantation," IEEE Photon Technol. Lett. 28(11), 1189–1192 (2016).
    [21] L. Su, X. Cai, H.Lu , D. Zhou, W. Xu, D. Chen et al., "Spatial Non-Uniform Hot Carrier Luminescence From 4H-SiC p-i-n Avalanche Photodiodes," IEEE Photon Technol. Lett. 31(6), 447–450 (2019).
    [22] J. D. Hwang, F. H. Wang, C. Y. Kung, and M. C. Chan, "Using the Surface Plasmon Resonance of Au Nanoparticles to Enhance Ultraviolet Response of ZnO Nanorods-Based Schottky-Barrier Photodetectors," IEEE Trans. Nanotechnol. 14(2), 318–321 (2015).
    [23] T.-F. Zhang, G.-A. Wu, J.-Z. Wang, Y.-Q. Yu, D.-Y. Zhang, and D.-D. Wang, "A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction" Nanophotonics 6(5), 1073–1081 (2017).
    [24] M. Patel, H.-S. Kim, and J. Kim, "All Transparent Metal Oxide Ultraviolet Photodetector," Adv. Electron. Mater. 1(11), 1500232 (2015).
    [25] R. Debnath, T. Xieab, B. Wenac, W. Lide, J. Y. Haaf, and N. F. Sullivanc et al. "A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector, " RSC Adv. 5, 14646–14652 (2015).
    [26] J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, and A. Song, "High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p−n Heterojunction," ACS Appl. Mater. Interfaces 10(9), 8102–8109 (2018).
    [27] Y. Ajiki, T. Kan, M. Yahiro, A. Hamada, J. Adachi, C. Adachi et al., "Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars," Appl. Phys. Lett. 108(15), 151102 (2016).
    [28] M. Patel, H.-S. Kim, H.-H. Park, and J. Kim, "Silver nanowires-templated metal oxide for broadband Schottky photodetector," Appl. Phys. Lett. 108(14), 141904 (2016).
    [29] Y. Wang, K. Ding, B. Sun, S.-T. Lee, and J. Jie, "Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications," Nano Res. 9(1), 72–93 (2016).
    [30] M. Casalino, "Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors, " IEEE 52(4), 1–10 (2016).
    [31] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, "Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor," Appl. Phys. Lett. 98, 122105 (2011).
    [32] Y. Li, Y. L. Pei, R. Q. Hu, Z. M. Chen, Y. Zhao, Z. Shen et al., "Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric," Curr. Appl. Phys. 14(7), 941–945 (2014).
    [33] C.-S. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, "Top-Gate Staggered Amorphous Silicon Thin-Film Transistors: Series Resistance and Nitride Thickness Effects," Jpn. J. Appl. Phys. 37, 5914 (1998).
    [34] H.-W. Zan, W.-T. Chen, C.-C. Yeh, H.-W. Hsueh, C.-C. Tsai, and H.-F. Meng, "Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement," Appl. Phys. Lett. 98, 153506 (2011).
    [35] K. T. Kim, J. Kim, Y.-H. Kim, and S. K. Park, "In-Situ Metallic Oxide Capping for High Mobility Solution-Processed Metal-Oxide TFTs," IEEE Electron Device Lett. 35(8), 850–852 (2014).
    [36] B. H. Lee, A. Sohn, S. Kim, and S. Y. Lee, "Mechanism of carrier controllability with metal capping layer on amorphous oxide SiZnSnO semiconductor," Sci. Rep. 9, 886 (2019).
    [37] D.-B. Ruan, P.-T. Liu, Y.-H. Chen, Y.-C. Chiu, T.-C. Chien, M.-C. Yu et al., "Photoresponsivity Enhancement and Extension of the Detection Spectrum for Amorphous Oxide Semiconductor Based Sensors," Adv. Electron. Mater. 5(3), 1800824 (2019).
    [38] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed, McGraw-Hill, 2001.
    [39] K. Kotani, A. Sasaki, and T. Ito, "High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs," IEEE J. Solid-State Circuits 44(11), 3011–3018 (2009).
    [40] Y.-S. Hwang, C.-C. Lei,Y.-W. Yang, J.-J. Chen, and C.-C. Yu, "A 13.56-MHz Low-Voltage and Low-Control-Loss RF-DC Rectifier Utilizing a Reducing Reverse Loss Technique," IEEE Trans. Power Electron. 29(12), 6544–6554 (2014).
    [41] M.-Y. Su, S.-J. Wang, and R.-M. Ko, "The use of a patterned NiO capping layer to improve photoresponsivity of ultraviolet photodetectors based on IGZO Field Effect Diodes," SSDM 2020, 673–674 (2020).
    [42] I. Soga, A. Komuro, and O. Tsuboi, "Rectifying characteristics of thin film self-switching devices with ZnO deposited by atomic layer deposition," Electron. Lett. 48(15), 914–916 (2012).
    [43] Y. Zhang, Z. Mei, S. Cui, H. Liang, Y. Liu, and X. Du, "Flexible Transparent Field-Effect Diodes Fabricated at Low-Temperature with All-Oxide Materials," Adv. Electron. Mater. 2(5), 1500486 (2016).
    [44] Z. Wang, F. H. Alshammari, H. Omran, M. K. Hota, H. A. Al-Jawhari, K. N. Salama et al., "All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage," Adv. Electron. Mater. 5(12), 1900531 (2019).
    [45] M. K. Hota, Q. Jiang, Z. Wang, Z. L. Wang, K. N. Salama, and H. N. Alshareef, "Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage," Adv. Mater. Lett. 31(25), 1807450 (2019).
    [46] B. Tiwari, P. G. Bahubalindruni, A. Santa, J. Martins, P. Mitta, J. Goes et al., "Oxide TFT Rectifiers on Flexible Substrates Operating at NFC Frequency Range," IEEE Electron Device Lett. 7, 329–334 (2019).
    [47] S. H. Cho, S. W. Kim, W. S. Cheong, C. W. Byun, C.-S. Hwang, K. I. Cho et al., "Oxide Thin Film Transistor Circuits for Transparent RFID Applications," IEICE Trans. Electron. E93-C(10), 1504–1509 (2010).
    [48] B. Iñiguez, T. A. Fjeldly, and M. S. Shur, "Thin-Film Transistor Modeling," Int. J. High Speed Electron. Syst. 9(3), 703–723 (1999).
    [49] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella et al., "Metal oxide semiconductor thin-film transistors for flexible electronics," Appl. Phys. Rev. 3, 021303 (2016).
    [50] S. D. Brotherton, Introduction to Thin Film Transistors, Springer, 2013.
    [51] N. Lu, W. Jiang, Q. Wu, D. Geng, L. Li, and M. Liu, "A Review for Compact Model of Thin-Film Transistors (TFTs)," MDPI 9(11), 599 (2018).
    [52] D. Boudinet, G. L. Blevennec, C. Serbutoviez, J.-M. Verilhac, H. Yan, and G. Horowitz, "Contact resistance and threshold voltage extraction in n-channel organic thin film transistors on plastic substrates," Int. J. Appl. Phys. 105, 084510 (2009).
    [53] S. K. Dargar, J. K. Srivastava, S. Bharti, and A. Nyati, "Performance estimation of N-channel ZnO based thin film transistor using simulation," ICRCICN, 262–265 (2016).
    [54] Y.-C. Yeo, T.-J. King, and C. Hu, "Direct tunneling leakage current and scalability of alternative gate dielectrics," Appl. Phys. Lett. 81, 2091 (2002).
    [55] E. W. Lim, and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics 4(3), 586–613 (2015).
    [56] A. Gehring, and S. Selberherr, "Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices," IEEE Trans. Device Mater. Reliab. 4(3), 306–319 (2004).
    [57] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Adv. Mater. Sci. Eng. 2014, 578168 (2014).
    [58] M. P. Houng, Y. H. Wang, and W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model," Int. J. Appl. Phys. 86, 1488 (1999).
    [59] E. Kameda, T. Matsuda, Y. Emura, and T. Ohzone, "Fowler–Nordheim tunneling in MOS capacitors with Si-implanted SiO2," Solid State Electron. Lett. 42(11), 2105–2111 (1998).
    [60] A. D. Mottram, Y.-H. Lin, P. Pattanasattayavong, K. Zhao, A. Amassian, and T. D. Anthopoulos, "Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications," Appl. Mater. Interfaces 8(7), 4894–4902 (2016).
    [61] H.-Y. Liu, F.-Y. Hou, and H.-S. Chu, "Mg0.35Zn0.65O/Al/ZnO Photodetectors With Capability of Identifying Ultraviolet-A/Ultraviolet-B," IEEE Trans. Electron Devices 67(7), 2812–2818 (2020).
    [62] "Introduction of Synopsys TCAD," https://www.synopsys.com/silicon/tcad.html.
    [63] Sentaurus TCAD User Manual Document ver. L-2016.03, Mountain View, CA, USA, 2016.
    [64] S. W. Shin, K.-H. Lee, J.-S. Park, and S. J. Kang, "Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots," ACS Appl. Mater. Interfaces 7(35), 19666–19671 (2015).
    [65] Z. Abas, H. S. Kim, L. Zhai, J. Kim, and J.-H. Kim, "Electrode effects of a cellulose-based electro-active paper energy harvester," Smart Mater. Struct. 23(7), 074003 (2014).
    [66] B. Kumar, B. K. Kaushik, and Y. S. Negi, "Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications," J. Mater. Sci.: Mater. Electron. 25, 1–30 (2014).
    [67] P. A. Anderson, "Work Function of Gold," Phys. Rev. 115(3), 553–554 (1959).
    [68] D. Gola, B. Singh, and P. K. Tiwari, "A Threshold Voltage Model of Tri-Gate Junctionless Field-Effect Transistors Including Substrate Bias Effects," IEEE Trans. Electron Devices 64(9), 3534–3540 (2017).
    [69] S. Park, N.-K. Cho, B. J. Kim, S. Y. Jeong, I. K. Han, Y. S. Kim et al., "Reducing the Persistent Photoconductivity Effect in Zinc Oxide by Sequential Surface Ultraviolet Ozone and Annealing Treatments," ACS Appl. Electron. Mater. 2655–2663 (2019).

    無法下載圖示 校內:2026-10-25公開
    校外:2026-10-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE