簡易檢索 / 詳目顯示

研究生: 劉睦恩
Liu, Mu-En
論文名稱: 量子子系統的普遍性質:糾纏、唯一性與糾纏傳遞
Generic Properties of Quantum Marginals: Entanglement, Uniqueness, and Entanglement Transitivity
指導教授: 梁永成
Liang, Yeong-Cherng
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 56
中文關鍵詞: 量子糾纏量子態相容性問題量子糾纏傳遞普遍量子子系統量子態唯一相容性
外文關鍵詞: Entanglement, Marginal Problem, Entanglement transitivity, Generic subsystems, Unique global compatibility
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討普遍的多體純量子態之子系統的以下特徵:這些子系統在何種情況下必定呈現糾纏?這些子系統所屬的整體量子態何時只會有一種可能?以及當他們已經糾纏時,何時能夠保證其他子系統也會是糾纏的?第三個現象又被稱作糾纏傳遞。若多體的子系統大小超過整體系統大小的一半,我們證明它在任意劃分下幾乎一定是糾纏的。因此,隨機產生的多體純量子態對於糾纏分發中的損失容忍度極高,可望應用於需要靈活協作的量子資訊協定。在某些局部維度下,與這些子系統相容的整體量子態僅有一種,即原始的純態本身。相較之下,在最簡單的貝爾情境中,我們發現端點三體無通訊關聯性大多不具備此唯一性。為了進一步理解相容性與唯一性之關係,我們推導了所有與給定的子系統相容的密度矩陣之間的關係。藉此我們發現,只要某一猜想成立,上述的唯一性在超出現有解析條件下的維度中依然可以成立。最後,我們證明糾纏傳遞在封閉系統乃一普遍現象。我們證明了在特定的維度下,這些子系統可展現糾纏傳遞,並輔以數值證據支持。我們的結果顯示,本論文討論的三種性質——普遍糾纏、唯一性與糾纏傳遞——在超出現有解析條件下的維度仍有可能成立。

    In this thesis, we investigate the behavior of the marginals of generic multipartite pure quantum states. We focus on three questions: when these marginals are almost surely entangled, when they uniquely determine the global state, and when they induce entanglement in other subsystems—a phenomenon known as entanglement transitivity. We find that sufficiently large marginals, if they also consist of many constituents, can almost surely be entangled with respect to every possible bipartition once their size exceeds roughly half of the global system. Generic multipartite pure states are thus robust to losses in entanglement distribution and may be useful for quantum information protocols where the flexible collaboration among subsets of clients is desirable. In certain local dimensions, such marginals uniquely determine the global state, forcing the original generic pure state to be their only possible extension. In contrast, we find that extremal tripartite nonsignaling correlations in the simplest Bell scenario generally lack this uniqueness. To better understand compatibility and uniqueness, we derive the relation between all density matrices that are compatible with a given set of marginals. Based on this, we show that the uniqueness property can hold well in other uncertified local dimensions, provided a conjecture holds. Ultimately, we show that entanglement transitivity is provably generic in closed systems by identifying the local dimensions under which these marginals can exhibit entanglement transitivity, and support these results with numerical evidence which suggests that all three properties—entangled marginals, unique global compatibility, and entanglement transitivity—extend beyond the analytically established dimensional conditions.

    Abstract ii Acknowledgements v Declaration ix Notations x 1 Introduction 1 2 Preliminaries: Channels and Entanglement 3 2.1 Quantum Channels and Completely Positive Maps 3 2.2 Entanglement and Positive Maps 4 2.3 Completely Entangled Subspaces and the Range Criterion 5 2.4 Entanglement Measures and Monotones 5 2.4.1 Definition and Example 5 2.5 A Family of Quantum Channels: Mixed-Unitary Channels 7 3 Randomizing Quantum States 10 3.1 Haar-Random Pure States 10 3.2 Generic Marginals 11 3.3 Generic Marginal Entanglement 11 3.3.1 Remarks on Lemma 3.2 12 3.3.2 Proof of Lemma 3.2 13 3.4 Generic Multipartite Marginal Entanglement 14 3.4.1 Results 14 3.4.2 Potential Applications 15 3.4.3 Proofs 16 4 Unique global compatibility 18 4.1 Uniqueness of Quantum States 18 4.1.1 Generic Tripartite Pure States 18 4.1.2 Generic Multipartite Pure States 19 4.1.3 Uniqueness from the Perspective of Fixed Points 19 4.2 Uniqueness of Correlations 24 4.2.1 Extremal No-Signaling Boxes in the Tripartite CHSH Scenario 24 4.2.2 Coretti’s Correlation 25 5 Entanglement Transitivity 27 5.1 Concept of Entanglement Transitivity 27 5.2 Generic Entanglement Transitivity 27 5.2.1 Tripartite Pure States 27 5.2.2 Multipartite Pure States 30 6 Conclusion 32 Appendices 34 A Random Variables and Vectors 35 A.1 Standard Normal Random Variables 35 A.2 Standard Complex Gaussian Vectors 36 Bibliography 39

    M. L. Almeida, J.-D. Bancal, N. Brunner, A. Acın, N. Gisin, and S. Pironio, “Guess your neighbor’s input: a multipartite nonlocal game with no quantum advantage”, Phys. Rev. Lett. 104, 230404 (2010).
    G. Aubrun, “Partial transposition of random states and non-centered semicircular distributions”, Random Matrices Theory Appl. 01, 1250001 (2012).
    G. Aubrun and I. Nechita, “Realigning random states”, J. Math. Phys. 53, 102210 (2012).
    G. Aubrun, S. Szarek, and E. Werner, “Hastings’s additivity counterexample via dvoretzky’s theorem”, Commun. Math. Phys. 305, 85–97 (2011).
    G. Aubrun and S. J. Szarek, Alice and bob meet banach: the interface of asymptotic geometric analysis and quantum information theory, Vol. 223 (Amer. Math. Soc., 2017).
    G. Aubrun, S. J. Szarek, and D. Ye, “Phase transitions for random states and a semicircle law for the partial transpose”, Phys. Rev. A 85, 030302 (2012).
    G. Aubrun, S. J. Szarek, and D. Ye, “Entanglement thresholds for random induced states”, Comm. Pure Appl. Math 67, 129–171 (2014).
    J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, “Nonlocal correlations as an information-theoretic resource”, Phys. Rev. A 71, 022101 (2005).
    S. Bäuml, “On bound key and the use of bound entanglement”, Diploma Thesis (Ludwig-Maximilians-Universität Munchen, Munich, Germany, 2010).
    I. Bengtsson and K. Zyczkowski, “Quantum entanglement”, in Geometry of quantum states: an introduction to quantum entanglement (Cambridge University Press, 2017), pp. 433–492.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76, 722–725 (1996).
    C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, “Unextendible product bases and bound entanglement”, Phys. Rev. Lett. 82, 5385–5388 (1999).
    R. Bhatia, Positive definite matrices (Princeton University Press, 2007).
    M. Boyer, R. Liss, and T. Mor, “Geometry of entanglement in the bloch sphere”, Phys. Rev. A 95, 032308 (2017).
    A. Broadbent and A. B. Grilo, “Qma-hardness of consistency of local density matrices with applications to quantum zero-knowledge”, SIAM J. Comput. 51, 1400–1450 (2022).
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality”, Rev. Mod. Phys. 86, 419–478 (2014).
    W. Bryc, “Normal distributions”, in The normal distribution: characterizations with applications (Springer New York, New York, NY, 1995), pp. 23–38.
    E. A. Carlen, J. L. Lebowitz, and E. H. Lieb, “On an extension problem for density matrices”, J. Math. Phys. 54, 062103 (2013).
    N. J. Cerf, C. Adami, and R. M. Gingrich, “Reduction criterion for separability”, Phys. Rev. A 60, 898–909 (1999).
    B. Chen, A. Coladangelo, and O. Sattath, “The power of a single haar random state: constructing and separating quantum pseudorandomness”, in Advances in cryptology–eurocrypt 2025, edited by S. Fehr and P.-A. Fouque (2025), pp. 108–137.
    J. Chen, H. Dawkins, Z. Ji, N. Johnston, D. Kribs, F. Shultz, and B. Zeng, “Uniqueness of quantum states compatible with given measurement results”, Phys. Rev. A 88, 012109 (2013).
    K.-S. Chen, G. N. M. Tabia, C.-Y. Hsieh, Y.-C. Yin, and Y.-C. Liang, “Nonlocality of quantum states can be transitive”, arXiv:2412.10505 (2024).
    L. Chen, O. Gittsovich, K. Modi, and M. Piani, “Role of correlations in the two-body-marginal problem”, Phys. Rev. A 90, 042314 (2014).
    V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement”, Phys. Rev. A 61, 052306 (2000).
    B. Collins and I. Nechita, “Random matrix techniques in quantum information theory”, J. Math. Phys. 57, 015215 (2016).
    B. Collins, Z. Yin, and P. Zhong, “The ppt square conjecture holds generically for some classes of independent states”, J. Phys. A: Math. Theor. 51, 425301 (2018).
    S. Coretti, E. Hänggi, and S. Wolf, “Nonlocality is transitive”, Phys. Rev. Lett. 107, 100402 (2011).
    M. Demianowicz, K. Vogtt, and R. Augusiak, “Completely entangled subspaces of entanglement depth k”, Phys. Rev. A 110, 012403 (2024).
    L. Diósi, “Three-party pure quantum states are determined by two two-party reduced states”, Phys. Rev. A 70, 010302 (2004).
    A. C. Doherty, “Entanglement and the shareability of quantum states”, J. Phys. A: Math. Theor. 47, 424004 (2014).
    A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Complete family of separability criteria”, Phys. Rev. A 69, 022308 (2004).
    W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways”, Phys. Rev. A 62, 062314 (2000).
    M. Fannes, J. T. Lewis, and A. Verbeure, “Symmetric states of composite systems”, Lett. Math. Phys. 15, 255–260 (1988).
    T. C. Fraser, “A sufficient family of necessary inequalities for the compatibility of quantum marginals”, arXiv:2211.00685 (2022).
    K. Fujii, “Introduction to grassmann manifolds and quantum computation”, J. Appl. Math. 2, 975761 (2002).
    M. Girard, D. Leung, J. Levick, C.-K. Li, V. Paulsen, Y. T. Poon, and J. Watrous, “On the Mixed-Unitary Rank of Quantum Channels”, Commun. Math. Phys. 394, 919–951 (2022).
    J. Goold, M. Huber, A. Riera, L. d. Rio, and P. Skrzypczyk, “The role of quantum information in thermodynamics—a topical review”, J. Phys. A: Math. Theor. 49, 143001 (2016).
    D. Gross, S. T. Flammia, and J. Eisert, “Most quantum states are too entangled to be useful as computational resources”, Phys. Rev. Lett. 102, 190501 (2009).
    O. Gühne and G. Tóth, “Entanglement detection”, Phys. Rep. 474, 1–75 (2009).
    Y. Guo, “Strict entanglement monotonicity under local operations and classical communication”, Phys. Rev. A 99, 022338 (2019).
    L. Gurvits and H. Barnum, “Largest separable balls around the maximally mixed bipartite quantum state”, Phys. Rev. A 66, 062311 (2002).
    A. Harrow, P. Hayden, and D. Leung, “Superdense coding of quantum states”, Phys. Rev. Lett. 92, 187901 (2004).
    A. W. Harrow, “The church of the symmetric subspace”, arXiv:1308.6595 (2013).
    M. B. Hastings, “Superadditivity of communication capacity using entangled inputs”, Nature Phys. 5, 255–257 (2009).
    M. Hayashi and L. Chen, “Weaker entanglement between two parties guarantees stronger entanglement with a third party”, Phys. Rev. A 84, 012325 (2011).
    P. Hayden, D. Leung, P. W. Shor, and A. Winter, “Randomizing quantum states: constructions and applications”, Commun. Math. Phys. 250, 371–391 (2004).
    P. Hayden, D. W. Leung, and A. Winter, “Aspects of generic entanglement”, Commun. Math. Phys. 265, 95–117 (2006).
    P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in random subsystems”, J. High Energy Phys. 2007, 120 (2007).
    S. A. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits”, Phys. Rev. Lett. 78, 5022–5025 (1997).
    M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing”, Phys. Rev. A 59, 1829–1834 (1999).
    M. Horodecki, P. W. Shor, and M. B. Ruskai, “Entanglement breaking channels”, Reviews in Mathematical Physics 15, 629–641 (2003).
    M. Horodecki and P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A 59, 4206–4216 (1999).
    M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions”, Physics Letters A 223, 1–8 (1996).
    P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition”, Phys. Lett. A 232, 333–339 (1997).
    P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, “Rank two bipartite bound entangled states do not exist”, Theor. Comput. Sci. 292, 589–596 (2003).
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement”, Rev. Mod. Phys. 81, 865–942 (2009).
    C.-Y. Hsieh, G. N. M. Tabia, Y.-C. Yin, and Y.-C. Liang, “Resource marginal problems”, Quantum 8, 1353 (2024).
    S. Huang, J. Chen, Y. Li, and B. Zeng, “Quantum state tomography for generic pure states”, Sci. China Phys. Mech. Astron. 61, 110311 (2018).
    L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix”, Physics Letters A 183, 14–18 (1993).
    M. A. Jivulescu, N. Lupa, and I. Nechita, “On the reduction criterion for random quantum states”, J. Math. Phys. 55, 112203 (2014).
    N. Johnston, “Non-positive-partial-transpose subspaces can be as large as any entangled subspace”, Phys. Rev. A 87, 064302 (2013).
    N. S. Jones and N. Linden, “Parts of quantum states”, Phys. Rev. A 71, 012324 (2005).
    S. Karuvade, P. D. Johnson, F. Ticozzi, and L. Viola, “Generic pure quantum states as steady states of quasi-local dissipative dynamics”, J. Phys. A: Math. Theor. 51, 145304 (2018).
    V. M. Kendon, K. Zyczkowski, and W. J. Munro, “Bounds on entanglement in qudit subsystems”, Phys. Rev. A 66, 062310 (2002).
    L. Lami and V. Giovannetti, “Entanglement-saving channels”, Journal of Mathematical Physics 57, 032201 (2016).
    C. Lancien, “K-extendibility of high-dimensional bipartite quantum states”, Random Matrices Theory Appl. 05, 1650011 (2016).
    C. Lancien, S. Di Martino, M. Huber, M. Piani, G. Adesso, and A. Winter, “Should entanglement measures be monogamous or faithful?”, Phys. Rev. Lett. 117, 060501 (2016).
    Y.-C. Liang, F. J. Curchod, J. Bowles, and N. Gisin, “Anonymous quantum nonlocality”, Phys. Rev. Lett. 113, 130401 (2014).
    N. Linden, S. Popescu, and W. K. Wootters, “Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices”, Phys. Rev. Lett. 89, 207901 (2002).
    N. Linden and W. K. Wootters, “The parts determine the whole in a generic pure quantum state”, Phys. Rev. Lett. 89, 277906 (2002).
    M.-E. Liu, K.-S. Chen, C.-Y. Hsieh, G. N. M. Tabia, and Y.-C. Liang, “Large parts are generically entangled across all cuts”, (2025).
    Y.-K. Liu, “Consistency of local density matrices is qma-complete”, in Approximation, randomization, and combinatorial optimization. algorithms and techniques, edited by J. Dıaz, K. Jansen, J. P. Rolim, and U. Zwick (2006), pp. 438–449.
    R. Lockhart, “Low-rank separable states are a set of measure zero within the set of low-rank states”, Phys. Rev. A 65, 064304 (2002).
    F. Ma and H.-Y. Huang, “How to construct random unitaries”, arXiv:2410.10116 (2024).
    L. Masanes, A. Acin, and N. Gisin, “General properties of nonsignaling theories”, Phys. Rev. A 73, 012112 (2006).
    N. Miklin, T. Moroder, and O. Gühne, “Multiparticle entanglement as an emergent phenomenon”, Phys. Rev. A 93, 020104 (2016).
    T. Mori and B. Yoshida, “Tripartite haar random state has no bipartite entanglement”, arXiv:2502.04437 (2025).
    M. P. Müller, E. Adlam, L. Masanes, and N. Wiebe, “Thermalization and canonical typicality in translation-invariant quantum lattice systems”, Commun. Math. Phys. 340, 499–561 (2015).
    M. Navascues, F. Baccari, and A. Acin, “Entanglement marginal problems”, Quantum 5, 589 (2021).
    M. Navascues, S. Pironio, and A. Acin, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations”, New Journal of Physics 10, 073013 (2008).
    A. Neven, J. Martin, and T. Bastin, “Entanglement robustness against particle loss in multiqubit systems”, Phys. Rev. A 98, 062335 (2018).
    M. A. Nielsen, “Conditions for a class of entanglement transformations”, Phys. Rev. Lett. 83, 436–439 (1999).
    M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: 10th anniversary edition (Cambridge University Press, 2010).
    M. Paraschiv, N. Miklin, T. Moroder, and O. Gühne, “Proving genuine multiparticle entanglement from separable nearest-neighbor marginals”, Phys. Rev. A 98, 062102 (2018).
    P. Parashar and S. Rana, “N-qubit W states are determined by their bipartite marginals”, Phys. Rev. A 80, 012319 (2009).
    K. R. Parthasarathy, “On the maximal dimension of a completely entangled subspace for finite level quantum systems”, Proc. Math. Sci. 114, 365–374 (2004).
    A. Peres, “Separability criterion for density matrices”, Phys. Rev. Lett. 77, 1413–1415 (1996).
    S. Perseguers, G. J. Lapeyre, D. Cavalcanti, M. Lewenstein, and A. Acın, “Distribution of entanglement in large-scale quantum networks”, Rep. Prog. Phys. 76, 096001 (2013).
    S. Pironio, J.-D. Bancal, and V. Scarani, “Extremal correlations of the tripartite no-signaling polytope”, Journal of Physics A: Mathematical and Theoretical 44, 065303 (2011).
    S. Popescu, A. J. Short, and A. Winter, “Entanglement and the foundations of statistical mechanics”, Nature Phys. 2, 754–758 (2006).
    R. Prabhu, A. K. Pati, A. Sen(De), and U. Sen, “Exclusion principle for quantum dense coding”, Phys. Rev. A 87, 052319 (2013).
    G. A. Raggio and R. F. Werner, “Quantum statistical mechanics of general mean field systems”, Helv. Phys. Acta. 62, 980–1003 (1989).
    S. Rana, “Negative eigenvalues of partial transposition of arbitrary bipartite states”, Phys. Rev. A 87, 054301 (2013).
    M. B. Ruskai, M. Junge, D. Kribs, P. Hayden, and A. Winter, Banff international research station workshop: operator structures in quantum information theory, (unpublished).
    M. B. Ruskai and E. M. Werner, “Bipartite states of low rank are almost surely entangled”, J. Phys. A: Math. Theor. 42, 095303 (2009).
    F. Shi, L. Chen, G. Chiribella, and Q. Zhao, “Entanglement detection length of multipartite quantum states”, Phys. Rev. Lett. 134, 050201 (2025).
    G. N. M. Tabia, K.-S. Chen, C.-Y. Hsieh, Y.-C. Yin, and Y.-C. Liang, “Entanglement transitivity problems”, npj Quantum Inf. 8, 98 (2022).
    G. N. M. Tabia and C.-Y. Hsieh, “Super-activating quantum memory by entanglement-breaking channels”, arXiv:2410.13499 (2024).
    G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, “Optimal spin squeezing inequalities detect bound entanglement in spin models”, Phys. Rev. Lett. 99, 250405 (2007).
    G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, “Spin squeezing and entanglement”, Phys. Rev. A 79, 042334 (2009).
    V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement”, Phys. Rev. Lett. 78, 2275–2279 (1997).
    T. Vértesi, W. Laskowski, and K. F. Pál, “Certifying nonlocality from separable marginals”, Phys. Rev. A 89, 012115 (2014).
    G. Vidal, “Entanglement monotones”, Journal of Modern Optics 47, 355–376 (2000).
    J. Walgate and A. J. Scott, “Generic local distinguishability and completely entangled subspaces”, J. Phys. A: Math. Theor. 41, 375305 (2008).
    N. R. Wallach, “An unentangled gleason’s theorem”, arXiv:quant-ph/0002058 (2000).
    J. Watrous, The theory of quantum information (Cambridge University Press, 2018).
    L. E. Würflinger, J.-D. Bancal, A. Acın, N. Gisin, and T. Vértesi, “Nonlocal multipartite correlations from local marginal probabilities”, Phys. Rev. A 86, 032117 (2012).
    N. Wyderka, F. Huber, and O. Gühne, “Almost all four-particle pure states are determined by their two-body marginals”, Phys. Rev. A 96, 010102 (2017).
    W. Zhang, F. Shi, and X. Zhang, “Almost all even-particle pure states are determined by their half-body marginals”, J. Phys. A: Math. Theor. 57, 495302 (2024).

    無法下載圖示 校內:2028-08-01公開
    校外:2028-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE