簡易檢索 / 詳目顯示

研究生: 賴政豪
Lai, Cheng-Hao
論文名稱: 有機磁性半導體薄膜成長於奈米壓印的介電層之特性研究
The study of magnetic organic semiconductor films deposited on nanoimprinted polymer dieletrics
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 五環素奈米壓印磁性材料
外文關鍵詞: Pentacene, nanoimprint lithography, magnetic material
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以PES軟性基板上製作具微奈米週期介電層PI,並於其上成長五環素(Pentacene)搭配參雜不同濃度之磁性材料。在此使用兩種奈米壓印方法製作週期性溝槽的介電層。首先個別分析探討兩種方法製作出來的樣本的差異,一為轉印法、另一為熱壓法,實驗結果得知熱壓法的製程對樣品材料傷害較少,五環素在磊晶時因週期性溝槽的影響,會產生不同於平面上的結構,且使用熱壓法的樣品上的五環素晶粒都大於使用轉印法的樣品,而且從拉曼散射圖亦可明顯看出使用熱壓法的樣品上的五環素分子排列也比較緊密。
    在不同線寬的週期性結構介電層PI上成長五環素,累積於谷底五環素的成長都是細小的晶粒,頂部的晶粒明顯地較大,可知在有週期性溝槽頂部的PI層給予五環素較好的成長條件。由拉曼光譜圖中,可知隨著壓印線寬的增加,此處的峰值越往低能量方向移動,可知道分子間排列更緊密。
    最後是在五環素中參雜磁性材料,蒸鍍於平面的PI膜上的五環素參雜不同濃度的鎳,表面形貌有明顯的改變,未參雜磁性物質的五環素薄膜晶粒大部分是屬於直徑200 nm左右的大小,僅少數有直徑超過500 nm以上的大型晶粒,而在參入1.3 %的鎳之後,晶粒大小混雜的情形更甚,成長垂直基板表面,但參雜到2.2 %後,五環素成長趨向平面發展。由X-Ray繞射圖譜,在參雜2.2 %的鎳的樣品,看不見五環素的訊號,但在參雜1.3 %的樣品卻是訊號最強,crystal size也相較之下也比較大,雖然有較大的垂直結晶,但在表面聚集上沒有很好的效果,聚集方向是垂直表面的。在參雜濃度越高,幾乎都是非晶相。
    最後討論由具微奈米周期性結構之介電層上成長五環素並參雜磁性材料的情形。由AFM圖中可看出從沒參雜鎳的五環素薄膜,無論是頂部或是底部的晶粒都有約直徑200 nm,最大的可以到500 nm以上,到低參雜,晶粒也明顯縮小,但是直徑最大也可以有200 nm的大小,高參雜的樣本中甚至有條狀的晶粒。可見參雜磁性物質確實對五環素薄膜造成一定的影響。加上線寬減小,高參雜的樣本表面沒有明顯的晶粒。X-Ray繞射光譜中,低參雜1.9 %的樣品的Crystal size較大,但在重參雜的樣品中,Crystal size明顯下降,從薄膜相變成非晶相,在線寬400 nm的情形更顯而易見,加入磁性材料確實有影響到五環素薄膜成長。

    The properties of magnetic organic semiconductor films deposited on a nanoimprinted polymer dielectrics layer are studied. A polyimide (PI) dielectric layer with periodic nanogratings is constructed using two methods, namely hot embossing nanoimprint lithography (HE-NIL) and contact-transferred and mask embedded lithography (CMEL). The pentacene grains that formed on HE-NIL-imprinted PI gratings are larger than those formed on CMEL-imprinted PI gratings. The intermolecular interaction of pentacene film grown on HE-NIL-imprinted PI gratings is stronger than that of pentacene film grown on CMEL-imprinted PI gratings.
    Pentacene films are also deposited on PI gratings with various periods. The vibrational frequency of hydrogen (H) atoms at both ends of the pentacene molecule decreases with decreasing period of PI gratings. Moreover, the grain size of pentacene films on the ridge is larger than that in the trench. The splitting of the 1154 cm-1 band related to the motion of H-atoms located at the end of the pentacene molecule disappeares when Nickel (Ni) atoms are doped into pentacene film. For the pentacene surface, the grain size decreases and the roughness increases with increasing Ni doping content. Similar results are obtained for Ni-doped pentacene films deposited on imprinted PI gratings. The crystalline size, calculated from the X-ray diffraction pattern, of the Ni-doped pentacene films has a maximum value at a doping concentration of Ni of 1.9%. The crystalline size then decreases with increasing doping concentration of Ni.

    中文摘要 I Abstract III 致謝 V 目錄 VII 表目錄 X 圖目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究目的 5 第2章 理論基礎 6 2.1 五環素特性簡介 6 2.2 奈米壓印技術 7 第3章 實驗儀器介紹 10 3.1 實驗製程儀器 10 3.1.1 壓印機台 10 3.1.2 分子束磊晶系統(Molecular Beam Epitaxy, MBE) 11 3.2 實驗量測儀器 13 3.2.1 原子力顯微鏡(Atomic Force Microscope, AFM) 13 3.2.2 微拉曼及微光激發光譜儀(Micro-Raman & Micro-PL) 15 3.2.3 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 18 3.2.4 X光繞射光譜儀(X-ray Diffraction, XRD) 19 第4章 實驗方法與材料分析 22 4.1 製程改進過程與結果 22 4.1.1 接觸轉印法 22 4.1.2 熱壓印法 36 4.1.3 樣品成長 39 4.1.4 成長結果與分析 39 4.2 週期性結構 57 4.3 五環素參雜磁性物質 65 第5章 結論與未來工作 86 5.1 結論 86 5.2 未來工作 88 參考文獻 90

    [1] 甘健佑, "多元塊狀永磁磁性及相變化之研究," 國立中正大學碩士論文, 2009.
    [2] S. M. Watts, et al., "Evidence for two-band magnetotransport in half-metallic chromium dioxide," Phys. Rev. B, vol. 61, p. 9621, 2000.
    [3] J. H. Park, et al., "Direct evidence for a half-metallic ferromagnet," Nature, vol. 392, pp. 794, 1998.
    [4] M. Cazayous, et al., "Iodine insertion in pentacene thin films investigated by infrared and Raman spectroscopy," PHYSICAL REVIEW B, vol. 70, p. 081309, 2004.
    [5] K. Hayashi, et al., "Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices," JOURNAL OF APPLIED PHYSICS, vol. 109, p. 023712, 2011.
    [6] Y. Matsuo, et al., "Stage structure and electrical properties of rubidium-doped pentacene," Physics Letters A vol. 321, pp. 62, 2004
    [7] T. W. Kelley, et al., "High performance organic thin film transistors," Mat Res Soc Symp Proc, vol. 771, pp. 169, 2003.
    [8] R. Ruiz, et al., "Pentacene ultrathin film formation on reduced and oxidized Si surfaces," Physical Review B, vol. 67, 2003.
    [9] 買昱椉, "有機半導體分子排列的基礎研究與對有機薄膜電晶體的應用," 國立成功大學碩士論文, 2004.
    [10] 買昱椉, "五環素薄膜初期成長機制研究," 國立成功大學博士論文, 2007.
    [11] S. Y. Chou, et al., "Imprint of Sub-25 Nm Vias and Trenches in Polymers," Applied Physics Letters, vol. 67, pp. 3114, 1995.
    [12] S. Y. Chou, et al., "Nanoimprint lithography," J. Vac. Sci. Technol. B, vol. 14, pp. 4129, 1996.
    [13] S. Y. Chou, et al., "Imprint Lithography with 25-Nanometer Resolution," Science, vol. 272, p. 85, 1996.
    [14] S. Zankovych, et al., "Nanoimprint lithography: challenges and prospects," Nanotechnology, vol. 12, pp. 91, 2001.
    [15] Y. Xia, et al., "Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters," Science, vol. 273, p. 347, 1996.
    [16] T. Bailey, et al., "Step and flash imprint lithography: Template surface treatment and defect analysis," Journal of Vacuum Science & Technology B, vol. 18, p. 3572, 2000.
    [17] S. Johnson, et al., "Fabrication of multi-tiered structures on step and flash imprint lithography templates," Microelectronic Engineering, vol. 67-8, pp. 221, 2003.
    [18] X. M. Zhao, et al., "Soft lighographic methods for nano-fabrication," Journal of Materials Chemistry, vol. 7, p. 1069, 1997.
    [19] Y. Xia and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science, vol. 28, pp. 153, 1998.
    [20] J. R. Ferraro, et al., "Introductory Raman Spectroscopy," Academic Press, 2002.
    [21] C. Y. Chiu and Y. C. Lee, "Fabrication of polyimide micro/nano-structures based on contact-transfer and mask-embedded lithography," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 19, p. 105001, 2009.
    [22] Y. C. Lee and C. Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 18, 2008.
    [23] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Advanced Materials, vol. 14, pp. 99, 2002.

    下載圖示 校內:2016-08-16公開
    校外:2016-08-16公開
    QR CODE