簡易檢索 / 詳目顯示

研究生: 詹益東
Chan, I-tung
論文名稱: 不完美界面下複合桿件的扭轉剛度上下限
Bounds for the torsional rigidity of composite shafts with imperfect interfaces
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 扭轉剛度上下限不完美界面
外文關鍵詞: torsional rigidity, imperfect interfaces, bounds
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合桿件在聖維南扭轉問題中,存在兩種不完美界面,一種是模擬低剪力模數的薄層界面,另一種是模擬高剪力模數的薄層界面。與完美界面相比,第一種界面的翹曲位移不連續,第二種界面的法線應力分量不連續,我們以界面剪力模數及厚度所定義的界面參數來表示不完美界面的特性。本文主要內容是藉由變分學理論,推導任意截面形狀的複合桿件其不完美界面扭轉剛度之上下限,基於合理的應力及位移場量架構下,討論界面的不完美連結對桿件扭轉剛度上下限的影響,桿件截面為圓形時定義一個參數 Rcr,當內含物半徑等於Rcr ,扭轉剛度上下限會重合,因此得到此桿件扭轉剛度的解析解。

    On the Saint-Venant torsion problem of composite shafts, two kinds of imperfect interfaces are considered. One models a thin interphase of low shear modulus and the other models a thin interphase of high shear modulus. Comparing with the case of perfect bonding, the first case undergoes a jump in the warping function and the second case undergoes a jump in the axial shear traction. The imperfect interfaces are characterized by parameters given in terms of the thickness and shear modulus of the interphase. By variational principles, we derive bounds for the torsional rigiditiy of composite shafts with cross-sections of arbitrary shapes. The analysis is based on the construction of admissible fields in the inclusions and in the matrix. To understand how the imperfect bonding influences the torsional rigidity which is obtained by a shaft with circular cross-section, we define the parameter Rcr. When the inclusion radius equals Rcr, the lower and upper bounds will coincide. In this situation, the torsional rigidity is theoretically exact.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 IX 第一章 緒論 1 1.1 理論背景與文獻回顧 1 1.2 論文內容簡介 3 第二章 基本扭轉公式與表面應力的影響 5 2.1 基本扭轉公式 5 2.1.1 翹曲函數 5 2.1.2 共軛諧和函數 9 2.1.3 應力函數 10 2.2 不完美界面(LS-type & HS-type)推導 12 2.2.1 以翹曲函數表示不完美界面之邊界條件 12 2.2.2 以應力函數表示不完美界面之邊界條件 18 2.3 扭轉剛度 22 第三章 變分學理論 29 3.1最小勢能定理 29 3.2最小虛補能定理 34 第四章 複合桿件扭轉剛度之下限 38 4.1假設翹曲函數與應力函數 38 4.2 LS-type界面扭轉剛度下限 41 4.3 HS-type界面扭轉剛度下限 46 第五章 複合桿件扭轉剛度之上限 51 5.1 LS-type界面扭轉剛度上限 51 5.2 HS-type界面扭轉剛度上限 54 第六章 內含物在不同截面形狀對扭轉剛度的影響 56 6.1 圓形截面 56 6.1.1 LS-type界面 56 6.1.2 HS-type界面 59 6.1.3完美界面 61 6.2 橢圓形截面 64 6.2.1 LS-type界面 64 6.2.2 HS-type界面 67 6.2.3 完美界面 69 6.2.4 橢圓形截面扭轉剛度上下限等位圖 70 6.3 正三角形截面 73 6.3.1 LS-type界面 74 6.3.2 HS-type界面 76 6.3.3完美界面 77 6.3.4正三角形截面扭轉剛度上下限等位圖 79 第七章 結論 84 參考文獻 86 附錄A 88 附錄B 92 自述 96

    Benveniste, Y. & Chen, T., On the Saint-Venant torsion of composite bars with imperfect interfaces, Proc. R. Soc. Lond. A 457, pp.231-255, 2001.

    Benveniste, Y. & Miloh, T., Neutral inhomogeneities in conduction phenomena, J. Mech. Phys. Solids 47, pp.1873-1892, 1999.

    Chen, T., Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids Struct. 38, pp.3081-3097, 2001.

    Chen, T., Benveniste, Y. & Chuang, P.C., Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages, Proc. R. Soc. Lond. A 458, pp.1719-1759, 2002.

    Chen, T., An exactly solvable microgeometry in torsion: assemblage of multicoated cylinders, Proc. R. Soc. Lond. A 460, pp.1981-1993, 2004.

    Chen, T. & Wei, C.J., Saint-Venant torsion of anisotropic shafts: theoretical frameworks, extremal bounds and affine transformations, Q. JI Mech. Appl. Math. 58 (2), pp.267-287, 2005.

    Chen, T., Chiu, M.S. & Weng, C.N., Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids, J. Appl. Phys. 100, 074308, 2006.

    Mansfield, E. H., Neutral holds in plane sheet-reinforced holes which are elastically equivalent to the uncut sheet. Quart. J. Mech. Appl. Math. 6, pp.370-378, 1953.

    Milton, G. W. & Serkov, S. K., Neutral inclusions for conductivity and anti-plane elasticity, Proc. R. Soc. Lond. A 457, pp.1973-1997, 2001.

    Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gronongen, 1953.

    Lipton, R. & Chen, T., Bounds and extremal configurations for the torsional rigidity of coated fiber reinforced shafts, SIAM J. Appl. Math. 65, no.1, pp.299-315, 2004.

    Lipton, R., Optimal configurations for maximum torsional rigidity, Arch. Ration. Mech. Analysis 144, pp.79-106, 1998.

    Ru, C. Q., Interface design of neutral elastic inclusion, Int. J. Solids Struct. 35, pp.559-572, 1998.

    Shenoy, V. B., Size-dependent rigidities of nanosized torsional elements, Int. J. Solids Struct. 39, pp.4039-4052, 2002.

    Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

    Timoshenko, S.P. & Gooder, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.

    下載圖示 校內:立即公開
    校外:2007-07-26公開
    QR CODE