簡易檢索 / 詳目顯示

研究生: 黃少宣
Huang, Shao-Hsuan
論文名稱: 環狀氣壓控制之紫外光固化奈米壓印機台與應用
Development and Application of a Multi-Ring Barometric Pressure Controlled Ultra-Violet Nano-Imprinting System
指導教授: 李永春
Lee, Yung-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 可撓式模具UV奈米壓印圖案化藍寶石基板
外文關鍵詞: Flexible stamp, UV nanoimprint lithography, Pattern sapphire substrate
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一種創新的奈米壓印系統與壓印方法,利用紫外光固化之奈米壓印製程技術,搭配環狀氣壓缸控制接觸壓力,與一壓克力複合可撓性模具,可應用於圖案化藍寶石基板 (Pattern Sapphire Substrate, PSS)、抗反射結構 (Moth’s - Eye)、複合模壓印、光通訊結構…等製程。實驗中使用一具有上、下兩獨立運動軸之機台、壓克力複合可撓性模具(Composite mold)、紫外光固化之阻劑膠 (UV-curable resist resin)、與不同大小尺寸的基板、多環狀氣壓控制系統,完成此一壓印製程。實驗中根據可撓式模具的柔軟特性,能完整貼覆於翹曲的基板上,提升壓印製成在大面積的可行性,改善傳統硬質壓印模具之高成本及低良率的問題,提升奈米壓印技術在產業應用上的可行性與廣泛性。另外,紫外光固化之壓印製程有著製程快速及常溫操作的優點,因此非常適合應用於量產的製程。在壓力控制方面,搭配多點陣列之平面壓力感測器來量測壓印時接觸面之壓力,以得到實際的壓力分布,最後搭配機台上下兩軸運動以及五門氣壓缸之個別獨立控制,可以找到最佳的壓印參數。
    本文成功在六吋玻璃上製作線寬2 um、週期3 um、柱高2 um、殘留層僅30 nm之柱狀光阻結構,以及線寬150 nm、週期300 nm之光阻孔洞結構與具各種尺寸之複合結構;壓印完成後可獲得均勻度佳、壓印面積大之壓印結果。

    This thesis develops a new imprinting system which is based on a flexible mold for ultraviolet (UV) nanoimprint lithography. This imprinting system can be applied to pattern sapphire substrate (PSS), anti-reflection structure (Moth’s – Eye), linear grating structure… processes. The imprinting equipment includes two independent loading axes, a composite flexible mold, UV-curable resist, a substrate, and a multi-ring barometric pressure system. Due to the deformable and flexible characteristic of the soft molds, it is possible to achieve a conformable contact with substrates. Using flexible molds can significantly improve the yield of imprinting processes and reduce the cost. On the other hand, UV nanoimprint has the advantages of large patterning area, high throughput, and room operating temperature, which make it highly suitable for mass production. In this work, multi-points pressure sensing sheet is used to measure the contact pressure during imprinting process. Perfect imprinting parameters can be determined experimentally
    This thesis completes 6” wafer imprinting of pillar structures with 2 um in diameter, 3 um in period, and 2 um in height, and only 30nm of residual layer is observed. We also complete arrayed micro-hole structures with 150 nm in diameter and 300 nm in period, as well as many composite structure with different sizes of structures. The PDMS imprint molds are duplicated from a hard silicon mold and therefore can be easily produced at low cost. By using this imprinting system we can get the results of good uniformity and big imprinting area.

    摘要 I Abstract II 誌謝 VII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 奈米壓印技術介紹 3 1.2.1 熱壓成形奈米壓印 (Hot Embossing Nanoimprint Lithography) 3 1.2.2 步進感光成形奈米壓印 (Step and Flash Imprinting Lithography) 4 1.2.3 軟微影技術 (Micro-contact Printing) 5 1.2.4 金屬轉印技術 (Contact Metal-mask Embedded Lithography) 6 1.2.5 雷射輔助直寫式壓印技術 (Laser Assisted Direct Imprinting) 7 1.3 研究動機及目的 9 第二章 設計概念與實驗架構 11 2.1 前言 11 2.2 製程設備簡介 14 2.2.1 壓印系統設計 14 2.2.2 五門氣壓環設計 17 2.2.3 氣壓控制系統設計 20 2.2.4 實驗設備 25 第三章 奈米結構製程與分析 29 3.1 前言 29 3.2 壓印模仁製備 30 3.2.1 矽模仁製備 30 3.2.2 壓克力PDMS軟性模具製備 34 3.3 壓印方法分析與測試 38 3.3.1 氣壓環壓力及壓印行程測試 38 3.3.2 壓印面積測試 55 3.4 壓印均勻性結果 57 第四章 奈米壓印結果與應用 61 4.1 前言 61 4.2 壓印製程分析與結果 61 4.2.1 壓印膠膜厚分析 61 4.2.2 不同壓力對殘留層厚度之影響 68 4.3 殘留層與結構均勻性分析 77 4.4 乾式蝕刻製程結果 82 4.4.1 感應耦合電漿蝕刻原理 82 4.4.2 乾式蝕刻結果 83 4.5 各式結構壓印製成與結果 84 4.5.1 壓印模仁製備 84 4.5.2 壓印製成分析與結果 87 第五章 壓印製程改善設計及分析 89 5.1 前言 89 5.2 壓印模具改善設計 90 5.3 壓印模具改善後壓印結果 93 第六章 結論與未來展望 98 6.1 結論 98 6.2 未來展望 99 參考文獻 100

    [1] M. Davanco, A. Xing, E. L. Hu, and D. J. Blumenthal, "Perspectives on the application of InP-based photonic crystal waveguides for optical signal processing," in Optics East 2005, 2005, pp. 601411-601411-15.
    [2] J. Lee, D.-H. Kim, J. Kim, and H. Jeon, "GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns," Current Applied Physics, vol. 9, pp. 633-635, 2009.
    [3] I. Tiginyanu, V. Ursaki, and V. Popa, "Nanoimprint lithography (NIL) and related techniques for electronics applications," pp. 280-329, 2011.
    [4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied physics letters, vol. 67, pp. 3114-3116, 1995.
    [5] "Manufacturing LEDs on large diameter substrates: What's the holdup?," LEDs magazine, 2013.
    [6] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, "Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates," Journal of Crystal Growth, vol. 311, pp. 2973-2976, 2009.
    [7] S. Y. Chou, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, p. 4129, 1996.
    [8] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," in Microlithography'99, 1999, pp. 379-389.
    [9] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, "Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing," Langmuir, vol. 12, pp. 4033-4038, 1996.
    [10] Y.-C. Lee and C.-Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," Journal of Micromechanics and Microengineering, vol. 18, p. 075013, 2008.
    [11] 謝易達 and 李永春, "奈米壓印與金屬轉印技術應用於提升發光二極體發光效率," 國立成功大學機械工程學系碩士論文, 2010.
    [12] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, et al., "High-power truncated-inverted-pyramid (AlxGa 1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Applied Physics Letters, vol. 75, p. 2365, 1999.
    [13] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, et al., "Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency," Materials Science and Engineering: B, vol. 138, pp. 157-160, 2007.
    [14] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Applied Physics Letters, vol. 86, p. 221101, 2005.
    [15] H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, et al., "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes," Optics Express, vol. 14, pp. 8654-8660, 2006.
    [16] Y.-J. Lee, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, "High brightness GaN-based light-emitting diodes," Display Technology, Journal of, vol. 3, pp. 118-125, 2007.
    [17] Y.-C. Lee, S.-C. Yeh, Y.-Y. Chou, P.-J. Tsai, J.-W. Pan, H.-M. Chou, et al., "High-efficiency InGaN-based LEDs grown on patterned sapphire substrates using nanoimprinting technology," Microelectronic Engineering, vol. 105, pp. 86-90, 2013.
    [18] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching," Solid-State Electronics, vol. 52, pp. 962-967, 2008.
    [19] J.-H. Lee, D.-Y. Lee, B.-W. Oh, and J.-H. Lee, "Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate," Electron Devices, IEEE Transactions on, vol. 57, pp. 157-163, 2010.
    [20] J.-H. Lee, J. Oh, Y. Kim, and J.-H. Lee, "Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire," Photonics Technology Letters, IEEE, vol. 20, pp. 1563-1565, 2008.
    [21] C.-C. Kao, Y.-K. Su, C.-L. Lin, and J.-J. Chen, "The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates," Applied Physics Letters, vol. 97, p. 023111, 2010.
    [22] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, et al., "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering, vol. 61, pp. 441-448, 2002.
    [23] N. Koo, M. Otto, J. W. Kim, J.-H. Jeong, and H. Kurz, "Press and release imprint: Control of the flexible mold deformation and the local variation of residual layer thickness in soft UV-NIL," Microelectronic Engineering, vol. 88, pp. 1033-1036, 2011.
    [24] 林威丞 and 李永春, "可撓式模具與紫外光固化奈米壓印技術應用於圖案化藍寶石基板製作," 國立成功大學機械工程學系碩士論文, 2013.

    無法下載圖示 校內:2022-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE