簡易檢索 / 詳目顯示

研究生: 馮景鼎
Fong, Jing-Ding
論文名稱: 氯化銻與氯化亞鈷在氯化鋁系列離子液體中的電化學行為
The Electrochemical Behaviors of Antimony(III) Chloride and Cobalt(II) Chloride in the Chloroaluminate Ionic Liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 離子液體電沉積鋁鈷合金
外文關鍵詞: Lewis acid chloroaluminate ionic liquids, Electrodeposition, Antimony, Aluminum-cobalt
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中分成兩部分,分別探討SbCl3在EMIC和CoCl2在TMHC不同陽離子的chloroaluminate離子液體中的電化學行為以及電沉積結果。
    第一部分為SbCl3在路易士酸性的AlCl3-EMIC中的電化學行為,如不同掃描速率、溫度的影響、Sb(III)的擴散係數、成核機制及電沉積Sb等,藉由改變溫度、電位、基材,電沉積出具有晶型的金屬態Sb與非晶相的AlSb。第二部分使用路易士酸性的AlCl3-TMHC離子液體,此離子液體在現今的文獻中討論的很少,在此離子液體中用定電位及定電流在不需要模板與添加劑的狀態即可電沉積出線狀與節狀的鋁線,將5% (mole %)的CoCl2加入此離子液體中,探討Co(II)在此系統中的電化學行為以及利用定電位、定電流與脈衝電位的方式來電沉積AlCo合金。三種方法都可以電沉積出AlCo奈米等級的線狀結構,特別的是在脈衝電位的方法中發現可以有像編織物的網狀結構出現,在離子液體中電沉積網狀結構的文獻非常的少,且此方法操作簡單又不需要其他的添加劑與模板輔助即可電沉積出網狀結構的鍍層。電沉積樣品表面形貌、成分與晶型結構以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDX)、X射線繞射分析儀(XRD)與穿透式電子顯微鏡(TEM)進行觀察及分析。

    In this study, the electrochemical behaviors of SbCl3 and CoCl2 were investigated in different AlCl3-EMIC and AlCl3-TMHC Lewis acid chloroaluminate ionic liquids.
    The electrodeposition of Sb and AlSb alloys was carried out in the Lewis acidic AlCl3-EMIC containing SbCl3. The crystalline Sb can be obtained at 0.7 V vs Al/Al(III) under 110ºC, and Cu2Sb can be observed when the substrate is Cu foil. The XRD pattern indicates AlSb deposit is amorphous.
    The electrodeposition of AlCo alloys was conducted in the Lewis acidic aluminum chloride-trimethylamine hydrochloride (60:40 mole% AlCl3-TMHC) ionic liquid containing 5% CoCl2. The deposition was performed by using constant potential, constant current, and pulse potential electrolysis methods, respectively. For constant potential and constant current electrolysis, the AlCo alloys twisted nanowires were obtained. Interestingly, the AlCo alloys prepared by using pulse potential AlCo alloys were scarf-like structure. All the electrodeposits are characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffractometer.

    中文摘要 I ExtendedAbstract II 致謝 VII 本文目錄 VIII 圖目綠 XI 表目綠 XVIII 第1章 緒論 1 1-1 離子液體 1 1-1-1 離子液體的介紹與特性 1 1-1-2 離子液體的發展及應用 3 1-2 Chloroaluminate Melt系列離子液體之發展與特性 5 1-2-1 Chloroaluminate 離子液體的介紹 5 1-2-2 Chloroaluminate系列離子液體的文獻回顧 9 1-3 鋁以及其相關合金的文獻回顧 11 1-3-1 Al-Sb特性及文獻回顧 12 1-3-2 Al-Co特性及文獻回顧 12 研究動機與目的 13 第2章 實驗原理與方法 14 2-1 電化學基本原理 14 2-2 循環伏安法(Cyclic Voltammetry) 15 2-3 旋轉電極伏安法(Rotating Disk Electrode Voltammetry) 16 2-4 電位階升法(Potential Step) 17 2-5 電化學成核理論 18 2-5-1 成核動力學 19 2-5-2 二維空間的核成長(2-D growth) 21 2-5-3 三維空間的核成長(3-D growth ) 23 第3章 實驗方法與儀器介紹 28 3-1 實驗藥品與材料 28 3-1-1 實驗藥品 28 3-1-2 金屬 31 3-2 離子液體的置備 32 3-2-1 AlCl3-EMIC製備 32 3-2-2 AlCl3-TMHC製備 32 3-3 儀器裝置 33 第4章 實驗結果與討論-氯化銻在路易士酸性氯化鋁離子液體中的電化學行為探討 36 4-1 探討SbCl3在路易士酸性AlCl3-EMIC中之電化學行為與電沉積 36 4-1-1 SbCl3在酸性AlCl3-EMIC中的電化學行為 36 4-1-2 SbCl3在酸性AlCl3-EMIC中之電沉積Sb與鍍層分析 58 4-2 探討AlSb之電化學行為及其電沉積 64 4-2-1 探討Al還原的電化學行為 64 4-2-2 SbCl3在酸性AlCl3-EMIC中之電沉積AlSb 70 第5章 實驗結果與討論-氯化亞鈷在路易士酸性氯化鋁離子液體中的電化學行為探討 72 5-1 在酸性AlCl3-TMHC中電沉積Al 72 5-2 CoCl2在酸性AlCl3-TMHC中電化學行為與電沉積之探討 75 5-2-1 CoCl2在酸性AlCl3-TMHC中電化學行為 75 5-2-2 CoCl2在酸性AlCl3-TMHC中電沉積AlCo 84 第6章 結論 91 參考資料 92

    [1] I. W. Sun, A. G. Edwards, and G. Mamantov, "Spectroscopic and electrochemical studies of tungsten(Vi) and tungsten(V) chloride and oxychloride complexes in a sodium-chloride saturated sodium chloroaluminate melt," Journal of the Electrochemical Society, vol. 140, 2733-2739, 1993.
    [2] B. Grushko and G. R. Stafford, "A cscl-Type phase in electrodeposited Al-Mn Alloys," Scripta Metallurgica Et Materialia, vol. 31, 1711-1716, 1994.
    [3] G. R. Stafford, "The electrodeposition of Al3Ti from chloroaluminate electrolytes," Journal of the Electrochemical Society, vol. 141, 945-953, 1994.
    [4] R. D. Rogers and K. R. Seddon, "Ionic liquids-Solvents of the future?," Science, vol. 302, 792-793, 2003.
    [5] M. R. Bermejo, F. de la Rosa, E. Barrado, and Y. Castrillejo, "Cathodic behaviour of europium (III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl," Journal of Electroanalytical Chemistry, vol. 603, 81-95, 2007.
    [6] N. V. Plechkova and K. R. Seddon, "Applications of ionic liquids in the chemical industry," Chemical Society Reviews, vol. 37, 123-150, 2008.
    [7] M. J. Earle and K. R. Seddon, "Ionic liquids. Green solvents for the future," Pure and Applied Chemistry, vol. 72, 1391-1398, 2000.
    [8] S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, et al., "Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid," Journal of Physical Chemistry B, vol. 110, 10228-10230, 2006.
    [9] S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, et al., "Imidazolium-based room-temperature ionic liquid for lithium secondary batteries-Effects of lithium salt concentration," Journal of the Electrochemical Society, vol. 154, A173-A177, 2007.
    [10] P. Walden, Bull. Acad. Imper. Sci., 1914.
    [11] J. S. Wilkes and M. J. Zaworotko, "Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids," Journal of the Chemical Society-Chemical Communications, 965-967, 1992.
    [12] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. DeSouza, and J. Dupont, "The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes," Polyhedron, vol. 15, 1217-1219, 1996.
    [13] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, "Hydrophobic, highly conductive ambient-temperature molten salts," Inorganic Chemistry, vol. 35, 1168-1178, 1996.
    [14] Z. Lin, P.-L. Taberna, and P. Simon, "Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte," Electrochimica Acta, vol. 206, 446-451, 2016.
    [15] P. Iamprasertkun, A. Krittayavathananon, and M. Sawangphruk, "N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors," Carbon, vol. 102, 455-461, 2016.
    [16] W.-C. Fu, Y.-T. Hsieh, T.-Y. Wu, and I. W. Sun, "Electrochemical preparation of porous poly(3,4-ethylenedioxythiophene) electrodes from room temperature ionic liquids for supercapacitors," Journal of the Electrochemical Society, vol. 163, G61-G68, 2016.
    [17] A. Lewandowski and A. Swiderska-Mocek, "Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies," Journal of Power Sources, vol. 194, 601-609, 2009.
    [18] L. Vieira, R. Schennach, and B. Gollas, "The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents," Electrochimica Acta, vol. 197, 344-352, 2016.
    [19] E. Barrado, J. A. Rodriguez, P. Hernandez, and Y. Castrillejo, "Electrochemical behavior of copper species in the 1-buthyl-3-methyl-imidazolium chloride (BMIMCl) ionic liquid on a Pt electrode," Journal of Electroanalytical Chemistry, vol. 768, 89-101, 2016.
    [20] A. P. Abbott, A. I. Alhaji, K. S. Ryder, M. Horne, and T. Rodopoulos, "Electrodeposition of copper-tin alloys using deep eutectic solvents," Transactions of the Institute of Metal Finishing, vol. 94, 104-113, 2016.
    [21] C. Xu, J. Zhao, Y. Hua, and Q. Zhang, "Electrodeposition of Ni-Mg alloys from 1-butyl-3-methylimidazolium chloride/glycerin eutectic-based ionic liquid," Journal of Solid State Electrochemistry, vol. 20, 793-800, 2016.
    [22] Y.-T. Hsieh, Y.-C. Chen, and I. W. Sun, "Electrodeposition of stoichiometric indium antimonide from room-temperature ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide," Chemelectrochem, vol. 3, 638-643, 2016.
    [23] L. Thiebaud, S. Legeai, and N. Stein, "Tuning the morphology of Te one-dimensional nanostructures by template-free electrochemical deposition in an ionic liquid," Electrochimica Acta, vol. 197, 300-306, 2016.
    [24] M. Morimitsu, N. Tanaka, and M. Matsunaga, "Induced codeposition of Al-Mg alloys in Lewis acidic AlCl3-EMIC room temperature molten salts," Chemistry Letters, 1028-1029, 2000.
    [25] T. Gandhi, K. S. Raja, and M. Misra, "Room temperature electrodeposition of aluminum antimonide compound semiconductor," Electrochimica Acta, vol. 53, 7331-7337, 2008.
    [26] S.-J. Pan, W.-T. Tsai, J.-K. Chang, and I. W. Sun, "Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid," Electrochimica Acta, vol. 55, 2158-2162, 2010.
    [27] S.-J. Pan, W.-T. Tsai, and I. W. Sun, "Electrodeposition of Al-Zn on magnesium alloy from ZnCl2-containing ionic liquids," Electrochemical and Solid State Letters, vol. 13, D69-D71, 2010.
    [28] J. Chen, B. Xu, and G. Ling, "Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl3-EMIC-MnCl2 ionic liquid and its corrosion behavior," Materials Chemistry and Physics, vol. 134, 1067-1071, 2012.
    [29] T. Tsuda, Y. Ikeda, T. Arimura, M. Hirogaki, A. Imanishi, S. Kuwabata, et al., "Electrodeposition of Al-W alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid," Journal of the Electrochemical Society, vol. 161, D405-D412, 2014.
    [30] T. Tsuda, Y. Ikeda, A. Imanishi, S. Kusumoto, S. Kuwabata, G. R. Stafford, et al., "Electrodeposition of Al-W-Mn ternary alloys from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid," Journal of the Electrochemical Society, vol. 162, D405-D411, 2015.
    [31] B. Xu, R. Qu, and G. Ling, "Anodic behavior of Mg in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid," Electrochimica Acta, vol. 149, 300-305, 2014.
    [32] R. Qu, Y. Jiang, B. Xu, J. Ding, C. Liao, and G. Ling, "Anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid," Journal of Rare Earths, vol. 33, 776-782, 2015.
    [33] A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, et al., "Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterization, and extraction studies," Environmental Science & Technology, vol. 36, 2523-2529, 2002.
    [34] J. D. Holbrey, A. E. Visser, S. K. Spear, W. M. Reichert, R. P. Swatloski, G. A. Broker, et al., "Mercury(II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid," Green Chemistry, vol. 5, 129-135, 2003.
    [35] H. M. Luo, S. Dai, P. V. Bonnesen, A. C. Buchanan, J. D. Holbrey, N. J. Bridges, et al., "Extraction of cesium ions from aqueous solutions using calix 4 arene-bis(tert-octylbenzo-crown-6) in ionic liquids," Analytical Chemistry, vol. 76, 3078-3083, 2004.
    [36] A. L. Rohan, J. R. Switzer, K. M. Flack, R. J. Hart, S. Sivaswamy, E. J. Biddinger, et al., "The Ssynthesis and the chemical and physical properties of non-aqueous silylamine solvents for carbon dioxide capture," Chemsuschem, vol. 5, 2181-2187, 2012.
    [37] X. Li, L. Zhang, Y. Zheng, and C. Zheng, "Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate," Industrial & Engineering Chemistry Research, vol. 54, 8569-8578, 2015.
    [38] Z. Wu, Z. Huang, Y. Zhang, Y.-H. Qin, J. Ma, and Y. Luo, "Kinetics analysis and regeneration performance of 1-butyl-3-methylimidazolium glycinate solutions for CO2 capture," Chemical Engineering Journal, vol. 295, 64-72, 2016.
    [39] M. Zoubeik, M. Mohamedali, and A. Henni, "Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids," Fluid Phase Equilibria, vol. 419, 67-74, 2016.
    [40] H. Lin, P. Bai, and X. Guo, "Ionic lLiquids for SO2 capture: Development and progress," Asian Journal of Chemistry, vol. 26, 2501-2506, 2014.
    [41] S. Zeng, H. Gao, X. Zhang, H. Dong, X. Zhang, and S. Zhang, "Efficient and reversible capture of SO2 by pyridinium-based ionic liquids," Chemical Engineering Journal, vol. 251, 248-256, 2014.
    [42] S. Sun, Y. Niu, Q. Xu, Z. Sun, and X. Wei, "Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride," Industrial & Engineering Chemistry Research, vol. 54, 8019-8024, 2015.
    [43] A. Mondal and S. Balasubramanian, "Understanding SO2 capture by ionic liquids," Journal of Physical Chemistry B, vol. 120, 4457-4466, 2016.
    [44] B. Jiang, W. Lin, L. Zhang, Y. Sun, H. Yang, L. Hao, et al., "1,3-Dimethylurea tetrabutylphosphonium bromide ionic liquids for NO efficient and reversible capture," Energy & Fuels, vol. 30, 735-739, 2016.
    [45] M. Li, J. Guan, J. Han, W. Liang, K. Wang, E. Duan, et al., "Absorption and oxidation of H2S in triethylamine hydrochloride center dot ferric chloride ionic liquids," Journal of Molecular Liquids, vol. 209, 58-61, 2015.
    [46] A. M. Elbasiony, M. Olschewski, S. Z. El Abedin, and F. Endres, "Template-free electrodeposition of SnSi nanowires from an ionic liquid," Chemelectrochem, vol. 2, 1361-1365, 2015.
    [47] Z. Liu, A. M. Elbasiony, S. Z. El Abedin, and F. Endres, "Electrodeposition of zinc-copper and zinc-tin films and free-standing nanowire arrays from ionic liquids," Chemelectrochem, vol. 2, 389-395, 2015.
    [48] S. Saha, T. Taguchi, N. Tachikawa, K. Yoshii, and Y. Katayama, "Electrochemical behavior of cadmium in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide room-temperature ionic liquid," Electrochimica Acta, vol. 183, 42-48, 2015.
    [49] J. A. Hammons, J. Ustarroz, T. Muselle, A. A. J. Torriero, H. Terryn, K. Suthar, et al., "Supported silver nanoparticle and near-interface solution dynamics in a deep eutectic solvent," Journal of Physical Chemistry C, vol. 120, 1534-1545, 2016.
    [50] F. H. Hurley and T. P. Wier, "Electrodeposition of metals from fused quaternary ammonium salts," Journal of the Electrochemical Society, vol. 98, 203-206, 1951.
    [51] R. J. Gale, B. Gilbert, and R. A. Osteryoung, "Raman-spectra of molten aluminum-chloride-1-butylpyridinium chloride systems at ambient-temperatures," Inorganic Chemistry, vol. 17, 2728-2729, 1978.
    [52] R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, "Density, electric-conductivity, and viscosity of several N-alkylpyridinium halides and their mixtures with aluminum-chloride," Journal of the Electrochemical Society, vol. 126, 1644-1650, 1979.
    [53] J. Robinson and R. A. Osteryoung, "Electrochemical and spectroscopic study of some aromatic-hydrocarbons in the room-temperature molten-salt system aluminum chloride-N-butylpyridinium chloride," Journal of the American Chemical Society, vol. 101, 323-327, 1979.
    [54] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, "Dialkylimidazolium chloroaluminate melts-A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis," Inorganic Chemistry, vol. 21, 1263-1264, 1982.
    [55] A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, et al., "Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids .2. Phase-transitions, densities, electrical conductivities, and viscosities," Journal of Physical Chemistry, vol. 88, 2614-2621, 1984.
    [56] R. J. Gale and R. A. Osteryoung, "Infrared spectral investigations of room-temperature aluminum chloride-1-butylpyridinium chloride melts," Inorganic Chemistry, vol. 19, 2240-2242, 1980.
    [57] J. L. Gray and G. E. Maciel, "Al-27 nuclear magnetic-resonance study of the room-temperature melt AlCl3-normal-butylpyridinium chloride," Journal of the American Chemical Society, vol. 103, 7147-7151, 1981.
    [58] F. Endres, "Ionic liquids: Promising solvents for electrochemistry," Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, vol. 218, 255-283, 2004.
    [59] C. J. Dymek, J. S. Wilkes, M. A. Einarsrud, and H. A. Oye, "Spectral identification of Al3Cl10- in 1-methyl-3-ethylimidazolium chloroaluminate molten-salt," Polyhedron, vol. 7, 1139-1145, 1988.
    [60] Q. Wang, Q. Zhang, B. Chen, X. Lu, and S. Zhang, "Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives," Journal of the Electrochemical Society, vol. 162, D320-D324, 2015.
    [61] X. Fang, K. Uehara, S. Kaneko, S. Sato, T. Tanabe, T. Gunji, et al., "The effect of additives on the fabrication of electroplated bright aluminum films using AlCl3-1-ethyl-3-methylimidazolium chloride-toluene baths," Electrochemistry, vol. 84, 17-24, 2016.
    [62] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, et al., "An ultrafast rechargeable aluminium-ion battery," Nature, vol. 520, 324-328, 2015.
    [63] T.-Y. Huang, C. J. Marvel, P. R. Cantwell, M. P. Harmer, and C. A. Schuh, "Grain boundary segregation in Al-Mn electrodeposits prepared from ionic liquid," Journal of Materials Science, vol. 51, 438-448, 2016.
    [64] J. J. Lee, I. T. Bae, D. A. Scherson, B. Miller, and K. A. Wheeler, "Underpotential deposition of aluminum and alloy formation on polycrystalline gold electrodes from AlCl3/EMIC room-temperature molten salts," Journal of the Electrochemical Society, vol. 147, 562-566, 2000.
    [65] X.-G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, and S. Dai, "Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries," Chemical Communications, vol. 52, 292-295, 2016.
    [66] T. Tsuda, C. L. Hussey, and G. R. Stafford, "Electrodeposition of Al-Mo alloys from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt," Journal of the Electrochemical Society, vol. 151, C379-C384, 2004.
    [67] M. R. Ali, A. Nishikata, and T. Tsuru, "Electrodeposition of Al-Ti alloys from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt," Indian Journal of Chemical Technology, vol. 10, 14-20, 2003.
    [68] T. Tsuda, C. L. Hussey, G. R. Stafford, and J. E. Bonevich, "Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt," Journal of the Electrochemical Society, vol. 150, C234-C243, 2003.
    [69] A. Lahiri and R. Das, "Spectroscopic studies of the ionic liquid during the electrodeposition of Al-Ti alloy in 1-ethyl-3-methylimidazolium chloride melt," Materials Chemistry and Physics, vol. 132, 34-38, 2012.
    [70] T. Tsuda and C. L. Hussey, "Electrodeposition of photocatalytic AlInSb semiconductor alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride room-temperature ionic liquid," Thin Solid Films, vol. 516, 6220-6225, 2008.
    [71] S. Z. El Abedin and F. Endres, "Free-Standing aluminium nanowire architectures made in an ionic liquid," Chemphyschem, vol. 13, 250-255, 2012.
    [72] C.-J. Su, Y.-T. Hsieh, C.-C. Chen, and I. W. Sun, "Electrodeposition of aluminum wires from the Lewis acidic AlCl3/trimethylamine hydrochloride ionic liquid without using a template," Electrochemistry Communications, vol. 34, 170-173, 2013.
    [73] S. Z. El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, and F. Endres, "Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid," Electrochemistry Communications, vol. 7, 1111-1116, 2005.
    [74] S. Z. El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, and F. Endres, "Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids," Chemphyschem, vol. 7, 1535-1543, 2006.
    [75] P. Giridhar, S. Z. El Abedin, and F. Endres, "Electrodeposition of nanocrystalline aluminium, copper, and copper-aluminium alloys from 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate ionic liquid," Journal of Solid State Electrochemistry, vol. 16, 3487-3497, 2012.
    [76] N. M. Rocher, E. I. Izgorodina, T. Ruether, M. Forsyth, D. R. MacFarlane, T. Rodopoulos, et al., "Aluminium speciation in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl3 mixtures," Chemistry-a European Journal, vol. 15, 3435-3447, 2009.
    [77] T. Rodopoulos, L. Smith, M. D. Horne, and T. Ruether, "Speciation of aluminium in mixtures of the ionic liquids C(3)mpip NTf2 and C(4)mpyr NTf2 with AlCl3: An electrochemical and NMR spectroscopy study," Chemistry-a European Journal, vol. 16, 3815-3826, 2010.
    [78] A. P. Abbott, R. C. Harris, Y.-T. Hsieh, K. S. Ryder, and I. W. Sun, "Aluminium electrodeposition under ambient conditions," Physical Chemistry Chemical Physics, vol. 16, 14675-14681, 2014.
    [79] J. B. Hacker, J. Bergman, G. Nagy, G. Sullivan, C. Kadow, H. K. Lin, et al., "An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier," Ieee Microwave and Wireless Components Letters, vol. 14, 156-158, 2004.
    [80] E. Lefebvre, M. Malmkvist, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, et al., "Gate-recess technology for InAs/AlSb HEMTs," Ieee Transactions on Electron Devices, vol. 56, 1904-1911, 2009.
    [81] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, "Antimonide-based compound semiconductors for electronic devices: A review," Solid-State Electronics, vol. 49, 1875-1895, 2005.
    [82] M. Stjerndahl, H. Bryngelsson, T. Gustafsson, J. T. Vaughey, M. M. Thackeray, and K. Edstrom, "Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries," Electrochimica Acta, vol. 52, 4947-4955, 2007.
    [83] A. Herczog, R. R. Haberecht, and A. E. Middleton, "Perparation and properties of aluminum antimonide," Journal of the Electrochemical Society, vol. 105, 533-540, 1958.
    [84] G. A. Armantrout, S. P. Swierkowski, J. W. Sherohman, and J. H. Yee, "What can be expected from high-Z semionductor-detectors," Ieee Transactions on Nuclear Science, vol. 24, 121-125, 1977.
    [85] R. Linnebach and K. W. Benz, "Bridgman growth of AlSb," Journal of Crystal Growth, vol. 53, 579-585, 1981.
    [86] W. P. Allred, B. Paris, and M. Genser, "Zone melting and crystal pulling experiments with AISb," Journal of the Electrochemical Society, vol. 105, 93-96, 1958.
    [87] C. T. Lin, E. Schonherr, H. Bender, and C. Busch, "On the growth of AlSb single-crystals," Journal of Crystal Growth, vol. 94, 955-958, 1989.
    [88] C. Wichasilp, T. Thongtem, and S. Thongtem, "Electric field assisted processing and characterization of AlSb nanocrystals," Current Applied Physics, vol. 11, 1031-1034, 2011.
    [89] M. Palcut, P. Priputen, M. Kusy, and J. Janovec, "Corrosion behaviour of Al-29at%Co alloy in aqueous NaCl," Corrosion Science, vol. 75, 461-466, 2013.
    [90] M. Palcut, P. Priputen, K. Salgo, and J. Janovec, "Phase constitution and corrosion resistance of Al-Co alloys," Materials Chemistry and Physics, vol. 166, 95-104, 2015.
    [91] A. Lekatou, A. K. Sfikas, C. Petsa, and A. E. Karantzalis, "Al-Co alloys prepared by vacuum arc melting: Correlating microstructure evolution and aqueous corrosion behavior with Co content," Metals, vol. 6, 2016.
    [92] D. Kandaskalov, V. Fournee, J. Ledieu, and E. Gaudry, "Adsorption properties of the o-Al13Co4(100) surface toward molecules involved in the semihydrogenation of acetylene," Journal of Physical Chemistry C, vol. 118, 23032-23041, 2014.
    [93] L. Soler, J. Macanas, M. Munoz, and J. Casado, "Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions," International Journal of Hydrogen Energy, vol. 32, 4702-4710, 2007.
    [94] L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, et al., "Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors," Chemical Communications, vol. 47, 3556-3558, 2011.
    [95] P. Y. Loh, K. K. Lee, Y. Ng, C. H. Sow, and W. S. Chin, "Co/Al layered double hydroxides nanostructures: A binderless electrode for electrochemical capacitor," Electrochemistry Communications, vol. 43, 9-12, 2014.
    [96] X. Wu, L. Jiang, C. Long, T. Wei, and Z. Fan, "Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors," Advanced Functional Materials, vol. 25, 1648-1655, 2015.
    [97] A. Zhang, C. Wang, Q. Xu, H. Liu, Y. Wang, and Y. Xia, "A hybrid aerogel of Co-Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors," Rsc Advances, vol. 5, 26017-26026, 2015.
    [98] R. T. Carlin, P. C. Trulove, and H. C. DeLong, "Electrodeposition of cobalt-aluminum alloys from room temperature chloroaluminate molten salt," Journal of the Electrochemical Society, vol. 143, 2747-2758, 1996.
    [99] J. A. Mitchell, W. R. Pitner, C. L. Hussey, and G. R. Stafford, "Electrodeposition of cobalt and cobalt-aluminum alloys from a room temperature chloroaluminate molten salt," Journal of the Electrochemical Society, vol. 143, 3448-3455, 1996.
    [100] M. R. Ali, A. Nishikata, and T. Tsuru, "Electrodeposition of Co-Al alloys of different composition from the AlCl3-BPC-CoCl2 room temperature molten salt," Electrochimica Acta, vol. 42, 1819-1828, 1997.
    [101] A. J. Bard and L. R. Faulkner, Electrochemical methods:Fundamentals and applications. New York: John Wiely & Sons, 1980.
    [102] R. Greef, R. Peat, L. M. Peter, D. Pletcher, and J. Robinson, Instrumental methods in electrochemistry. New York: John Wiley & Sons, 1985.
    [103] D. Pletcher, A first course in electrode processes. England: The Electrochemical Consultancy, 1991.
    [104] G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, "Electrochemical nucleation .1. General-considerations," Journal of Electroanalytical Chemistry, vol. 138, 225-239, 1982.
    [105] P. Allongue and E. Souteyrand, "Metal electrodeposition on semiconductors .1. Comparison with glassy-carbon in the case of platinum deposition," Journal of Electroanalytical Chemistry, vol. 286, 217-237, 1990.
    [106] G. Gunawardena, G. Hills, and I. Montenegro, "Electrochemical nucleation .2. The electrodeposition of silver on vitreous carbon," Journal of Electroanalytical Chemistry, vol. 138, 241-254, 1982.
    [107] G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, "Electrochemical nucleation .3. The electrodeposition of mercury on vitreous carbon," Journal of Electroanalytical Chemistry, vol. 138, 255-271, 1982.
    [108] G. Gunawardena, G. Hills, and I. Montenegro, "Electrochemical nucleation .4. electrodeposition of copper onto vitreous carbon," Journal of Electroanalytical Chemistry, vol. 184, 357-369, 1985.
    [109] G. Gunawardena, G. Hills, and I. Montenegro, "Electrochemical nucleation .5. electrodeposition of cadmium onto vitreous carbon and tin oxide electrodes," Journal of Electroanalytical Chemistry, vol. 184, 371-389, 1985.
    [110] B. Scharifker and G. Hills, "Theoretical and experimental studies of multiple nucleation," Electrochimica Acta, vol. 28, 879-889, 1983.
    [111] D. A. Habboush and R. A. Osteryoung, "Electrochemical studies of antimony(III) and antimony(V) in molten mixtures of aluminum-chloride and butylpyridinium chloride," Inorganic Chemistry, vol. 23, 1726-1734, 1984.
    [112] M. Lipsztajn and R. A. Osteryoung, "Studies of antimony(III) in ambient-temperature ionic liquids," Inorganic Chemistry, vol. 24, 3492-3494, 1985.

    無法下載圖示 校內:2020-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE