| 研究生: |
吳子瑄 Wu, Tz-Shiuan |
|---|---|
| 論文名稱: |
2-氯乙醇在Ni(111)表面上的熱反應研究 Thermal Chemistry of 2-Chloroethanol on Ni(111) Surface |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 超高真空系統 、程序控溫反應/脫附 、X-光光電子能譜 、反射式吸收紅外光譜 、2-氯乙醇 |
| 外文關鍵詞: | ultra-high vacuum chamber, TPR/D, XPS, RAIRS, ClCH2CH2OH |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是以程序控溫反應/脫附(Temperature-programmed reaction/desorption, TPR/D)、X-光光電子能譜(X-ray photoelectron spectroscopy, XPS)和反射式吸收紅外光譜(Reflection-Absorption Infrared Spectroscopy, RAIRS)探討超高真空系統中2-氯乙醇/Ni(111)的反應。2-氯乙醇在Ni(111)表面上會分解形成乙烯、氫氣及CO脫附。在120 K時2-氯乙醇以三種形式吸附於表面上,分別為ClCH2CH2OH、ClCH2CH2O-及-CH2CH2OH。ClClCH2CH2OH和-CH2CH2OH約在150-200 K斷O-H鍵形成ClCH2CH2O-和-CH2CH2O-(oxametallacycle)。ClCH2CH2O-在約200-250 K同時斷C-Cl及C-O鍵生成乙烯,-CH2CH2O-分解成氫氣和CO並在表面留下殘C。
In this research, temperature-programmed reaction/ desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), and reflection-absorption infrared spectroscopy (RAIRS) have been employed to investigate the thermal reaction of ClCH2CH2OH on Ni(111) in an ultra-high vacuum chamber. C2H4, H2, and CO are the reaction products from ClCH2CH2OH decomposition on the surface. At 120 K, ClCH2CH2OH is adsorbed in the form of ClCH2CH2OH, ClCH2CH2O-, and -CH2CH2OH. The O-H bonds of ClCH2CH2OH and -CH2CH2OH dissociate at about 150-200 K, producing ClCH2CH2O- and -CH2CH2O-(oxametallacycle). The C-Cl and C-O bonds of ClCH2CH2O- break at 200-250 K, with the formation of ethylene. -CH2CH2O- decomposes into H2 and CO, leaving carbon atoms on the surface.
[1] G. A. Somorjai, " Introduction to Surface Chemistry and Catalysis" Wiley & Sons, New York, 1994.
[2] S. J. Gregg; K. S. Sing, "Adsorption, Surface Area and Porosity" Academic Press, New York, 1967.
[3] X. L. Zhou; J. M. White, Surf. Sci. 1988, 194, 438-456.
[4] S. Tjandra; F. Zaera, J. Phys. Chem. B 1997, 101, 1006-1013.
[5] L. J. Richter; W. Ho, J. Chem. Phys., 1985, 83, 2569-2582.
[6] J. N. Russell, Jr.; I. Chorkendorff; J. T. Yates, Jr. Surf. Sci., 1987, 183, 316-330.
[7] S. R. Bare; J. A. Stroscio; W. Ho, Surf. Sci., 1985, 150, 399-418.
[8] S. M. Gates; J. N. Russell, Jr. and J. T. Yates, Jr., Surf. Sci. 1986, 171, 111-134.
[9] J. Xu; X. Zhang; R. Zenobi; J. Yoshinobu; Z. Xu and John T. Yates, Jr., Surf. Sci. 1991, 256, 288-300.
[10] L. J. Shorthouse; A. T. Roberts; R. Raval, Surf. Sci., 2001, 480, 37-46.
[11] C. J. Houtman; M. A. Barteau, J. Catal. 1991, 130, 528-546.
[12] N. F. Brown; M. A. Barteau, Langmir 1995, 11, 1184-1189.
[13] Q. Zhao; F. Zaera, J. Am. Chem. Soc., 2003, 125, 10776-10777.
[14] Q. Zhao; R. Deng; F. Zaera, J. Phys. Chem. C, 2010, 114, 7913-7919.
[15] Q. Zhao; F. Zaera, J. Phys. Chem. B. 2003, 107, 9047-9055.
[16] Y. H. Liao; C. Y. Chen; T. W. Fu; C.Y. Wang; L. J. Fan; Y. W. Yang; J. L. Lin, Surf. Sci., 2006, 600, 417-423.
[17] T. W. Fu; Y. H. Liao; C. Y. Chen; P. T. Chang; C. Y. Wang; J. L. Lin, J. Phys. Chem. B, 2005, 109, 18921-18928.
[18] P. T. Chang; J. J. Shih; K. H. Kuo; C. Y. Chen; T. W. Fu; D. L. Shieh; Y. H. Liao; J. L. Lin, J. Phys. Chem. B, 2004, 108, 13320-13328.
[19] 陳嘉淵碩士論文,國立成功大學化學所, 2002.
[20] P. Auger, J. Phy. Radium, 1925, 6, 205.
[21] J. C. Vickerman,"Surface Analysis-The Principle Techniques" Wiley & Sons, New York, 1997.
[22] G. Ertl; J. Kuppers, "Low Energy Electrons and Surface Chemistry" Verlag Chemie, Germany, 22, 1974.
[23] P. A. Redhead, Vacuum, 1962, 12, 203-211.
[24] J. L. Lin, "Carbon-Halogen Bond Dissociation at Copper Surface: Alkyl Radicals versus Metal Alkyls" Ph.D. dissertation, Columbia University, P29-30, 1993.
[25] 陳誌偉碩士論文, 國立成功大學化學所, 2010.
[26] T. Pache; H.-P. Steinruck; W. Huber; D. Menzel, Surf. Sci., 1989,
224, 195-214.
[27] Gleason, N. R.; Zaera, F., J. Catal., 1997, 169, 365-381.
[28] J.E. Demuth, Surf. Sci., 1978, 76, L603-L608.
[29] Y. X. Shao; D. Dong; Y. H. Cai; S. Wang; S. G. Ang; G. Q. Xu, J. Phys. Chem. C, 2010, 114, 17159-17165.
[30] G. Held ; J. Schuler; W. Sklarek; H. P. Steinriick, Surf. Sci.,1998, 398, 154-171.
[31] W. Kuch; M. Schulze; W. Schnurnberger; K. Bolwin, Ber. Bunsenges. Phys. Chem., 1993, 97, 356-359.
[32] R. E. Rettew; A. Meyer; S. D. Senanayake; T. L. Chen; C. Petersburg; J. I. Flege; J. Faltab; F. M. Alamgir, Phys. Chem. Chem. Phys., 2011, 13, 11034-11044.
[33] L. Homamen, Spectrochim. Acta, 1983, 39A, 77-84.
[34] P. Buckley; P. A. Giguere; D. Yamamoto, Can. J. Chem., 1968, 46, 2917-2923.
[35] A. Almenningen; O. Bastiansen; L. Fernholt; K. Hedberg, Acta Chem. Scand. 1971, 25, 1946-1958.
[36] K. Hagen; K. Hedberg, J. Am. Chem. Soc., 1973, 95, 8263-8266.
[37] R. C. Griffith; J. D. Roberts, Tetrahedron letters, 1974, 15, 3499-3502.
[38] G. Crowder; D. Tennant, J. Fluor. Chem. 1975, 6, 279-285.
[39] M. Perttila; J. Murto; L. Halonen, Spectrochim. Acta, 1978, 34A, 469-474.
[40] E. Wyn-Jones; W. J. Orgille-thomas, J. Mol. Struct., 1967, 1, 79-90.
[41] S. T. Ceyer, Acc. Chem. Res., 2001, 34, 737-744.
[42] G. Scott Jones; M. Mavrikakis; M. A. Barteau; J. M. Vohs, J. Am. Chem. Soc., 1998, 120, 3196-3204.
[43] J. R. Roy; M. A. Laliberte; S. Lavoie; M. Castonguay;
P. H. McBreen, Surf. Sci., 2005, 578, 43-56.
[44] T. E. Madey; F. P. Netzer, Surf. Sci., 1982, 117, 549-560.
校內:2017-08-03公開