| 研究生: |
古涵 Ku, Han |
|---|---|
| 論文名稱: |
圖案化基材發光二極體光亮度提升之研究 Enhancement of Light Output Intensity in LEDs with Patterned Substrate |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 多孔性陽極氧化鋁薄膜 、底層柱狀結構 、發光二極體 、有限時域差分法 |
| 外文關鍵詞: | bottom pillar (BP) structure, porous anodic alumina (PAA) film, light-emitting diodes, finite-difference and time-domain method |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以有限時域差分法(FDTD)建立一個三維的理論計算模型,研究發光二極體結構的改善對光亮度提升的影響,主要討論的結構為表面成長多孔性陽極氧化鋁的AlGaInP發光二極體,以及底層蝕刻週期性柱狀結構的圖案化基材GaN發光二極體。透過以傳統結構LED計算出的光亮度做規一化,可評估結構的改善對光亮度提升的量值,用以分別討論多孔性陽極氧化鋁以及底層柱狀結構參數變化的影響。
經由理論計算的結果,AlGaInP發光二極體可藉由多孔性陽極氧化鋁薄膜得到約35%的光亮度提升,另一方面,GaN發光二極體圖案化基材的底層柱狀結構,也對光亮度提升有30%的增強效果。這些結構對光亮度的作用,可藉由光學行為上相互影響的物理機制加以解釋,此外,為了對照理論計算的結果,多孔性陽極氧化鋁及底層柱狀結構的發光二極體都加以實作,而實驗的結果也表現出與理論計算一致的趨勢。
A three-dimensional model with finite-difference and time-domain (FDTD) method was established to investigate the enhancement of the light output intensity in improved light-emitting diodes (LEDs) structure. There are two major structures considered in this thesis. One is the AlGaInP LEDs with porous anodic alumina (PAA) film deposited on top surface, and the other is GaN LEDs with bottom pillar (BP) patterned substrate. Through comparing the calculated normalized light extraction intensity from conventional LEDs, AlGaInP LEDs with PAA film and GaN LEDs with BP structure in different dimensions were studied respectively.
From the theoretical result, it shows that the light output intensity in the AlGaInP LEDs with PAA film involved could be enhanced by about 35%. On the other hand, an improvement of the GaN LED with BP patterned substrate could be obtained by about 30%. The influence of these two structures on the light output intensity of LEDs could be explained by the physic model of light interaction. In addition, the practical fabrications of porous anodic alumina film and bottom pillar were both carried out. The experimental results of PAA and BP structures also show the same trend to the theoretical calculations.
[1] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured thin-film LEDs” Appl. Phys. Lett., vol. 63, p. 2174 (1993).
[2] C.-C. Liu, Y.-H. Chen, M.-P. Houng, Y.-H. Wang, Y.-K. Su, W.-B. Chen, and S.-M. Chen, “Improved light-output power of GaN LEDs by selective region activation” IEEE Photonics Technol. Lett., vol. 16, p. 1444 (2004).
[3] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, p. 2937 (1990).
[4] K. J. Knopp, R. P. Mirin, K. A. Bertness, K. L. Silverman, and D. H. Christensen, “Compound semiconductor oxide antireflection coatings” J. Appl. Phys., vol. 87, p. 7169 (2000).
[5] J.-H. Lee, J.-T. Oh, J.-S. Park, J.-W. Kim, Y.-C. Kim, J.-W. Lee, and H.-K. Cho, “Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire” phys. stat. sol. (c), vol. 3, p. 2169 (2006).
[6] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Crawford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. P. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting >50 external quantum efficiency” Appl. Phys. Lett., vol. 75, p. 2365 (1999).
[7] M. Borodilsky, T. F. Kraus, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals” Appl. Phys. Lett., vol. 75, p. 1036 (1999).
[8] R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “ Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes” Appl. Phys. Lett., vol. 79, p. 2315 (2001).
[9] J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes” Appl. Phys. Lett., vol. 77, p. 3340 (2000).
[10] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes” Appl. Phys. Lett., vol. 84, p. 466 (2004).
[11] C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface” J. Appl. Phys., vol. 93, p. 9383 (2003).
[12] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode” Jpn. J. Appl. Phys., vol. 41, p. L1431 (2002).
[13] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy” Jpn. J. Appl. Phys., vol. 40, p. L583 (2001).
[14] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates” IEEE Photonics Technol. Lett., vol. 18, p. 1152 (2006).
[15] W.-K. Wang, D.-S. Wuu, S.-H. Lin, P. Han, R.-H. Horng, T.-C. Hsu, D. T.-C. Huo, M.-J. Jou, Y.-H. Yu, and A. Lin, “Efficiency Improvement of Near-Ultraviolet InGaN LEDs Using Patterned Sapphire Substrates” IEEE J. Quantum Electron., Vol. 41, p. 1403 (2005).
[16] D. S. Wuu, W. K. Wang, W. C. Shin, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates” IEEE Photonics Technol. Lett., vol. 17, p. 288 (2005).
[17] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based LED with introducing micro-structure array” Opt. Eng., vol. 43, p. 1700 (2004).
[18] K. Tsakmakidis, B. Weiss and O. Hess, “Full-wave electromagnetic modelling of an InP/InGaAs traveling-wave heterojunction phototransistor” J. Phys. D: Appl. Phys., vol. 39, p. 1805 (2006).
[19] W. J. Choi, Q-H. Park, D. Kim, H. Jeon, C. Sone, and Y. Park, “FDTD Simulation for Light Extraction in a GaN-Based LED” Journal of the Korean Physical Society, vol. 49, p. 877 (2006).
[20] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals” Science, vol. 308, p. 1296 (2005).
[21] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals” Phys. Rev. Lett., vol. 78, p. 3294 (1997).
[22] D. K. Cheng, Field and Wave Electromagnetics, 2th ed. (Addison-Wesley Publishing Company, 1989), Chap. 8, pp.379-380.
[23] Fullwave 5.0 User Manual (RSoft Design Group Inc., Ossining, NY, USA, 2006).
[24] K.-H. Jung, J.-W. Yoon, N. Koshizaki and Y.-S. Kwon, “Fabrication of Gold Dot and Tubular Gold Arrays Using Anodic Aluminum Oxide Film as Template” Jpn. J. Appl. Phys., vol. 44, p. 5300 (2005).
[25] P. G. Miney, P. E. Colavita, M. V. Shiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and Characterization of a Porous Aluminum Oxide Film Formed on an Electrically Insulating Support” Electrochem. Solid-State Lett., vol. 6, p. B42 (2003).
[26] A. P. Li, F. Müller, A. Birner, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina” J. Appl. Phys., vol. 84, p. 6023 (1998).
[27] S. Z. Chu, K. Wada, S. Inoue, and S. Todoroki, “Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate” J. Electrochem. Soc., vol. 149, p. B321 (2002).
[28] S. Van Gils, Th. Dimogerontakis, G. Buytaert, E. Stijns, H. Terryn, P. Skeldon, G. E. Thompson, and M. R. Alexander, “Optical properties of magnetron-sputtered and rolled aluminum” J. Appl. Phys., vol. 98, p. 083505 (2005).
[29] E. S. Kooij, H. Wormeester, A. C. Galca, and B. Poelsema, “Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry” Electrochem. Solid-State Lett., vol. 6, p. B52 (2003).
[30] B.E. Yoldas, “Investigations of porous oxides as an antireflective coating for glass surfaces” Appl. Opt., vol. 19, p. 1425 (1980).
[31] C.H. Jeong, D.W. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung and G.Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma” Surf. Coat. Technol., vol. 171, p. 280 (2003).
[32] T. V. Cuong, H. S. Cheong, and C.-H. Hong, “Calculation of the external quantum efficiency of light emitting diodes with different chip designs” phys. stat. sol. (c), vol. 1, p. 2433 (2004).
[33] F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 338.
[34] “Interference coatings” Wikimedia Foundation, Inc., http://en.wikipedia.org/wiki/Anti-reflective
[35] C.-H. Chao, S. L. Chuang, and T.-L. Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals” Appl. Phys. Lett., vol. 89, p. 091116 (2006).