簡易檢索 / 詳目顯示

研究生: 蔡思聖
Tsai, Sz-Sheng
論文名稱: 流量變化對太魯閣國家公園砂卡礑溪襀翅目群集與棲地之影響
Effects of flow dynamics on stonefly community and their habitats in Sakadang Stream, Taroko National Park
指導教授: 侯平君
Hou, Ping-Chun Lucy
共同指導教授: 黃國靖
Huang, Guo-Jing
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物多樣性研究所
Institute of Biodiversity
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 極端降雨事件洪流擾動砂卡礑溪襀翅目典型對應分析
外文關鍵詞: extreme rainfall, flood disturbance, Sakadang Stream, Plecoptera, canonical corresponding analysis
相關次數: 點閱:77下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 降雨量變化影響溪流之流量表現,大量降雨則造成洪流事件,影響溪流棲地環境與底棲生物組成。本研究以太魯閣國家公園砂卡礑溪所產之襀翅目(Plecoptera)稚蟲群集為對象,探討襀翅目群集結構與棲地關聯性的季節性變化。實驗期間為2008年四月至2009年四月,於砂卡礑步道沿線設置四個調查樣站,以每月乙次的頻度進行稚蟲採樣與環境變項量測,結果如下述。(一) 溪流環境變化主要與豪、大雨事件頻度有關,主成分分析前兩軸顯示,九月以前,環境變異主要與流量增加有關;九月後環境變異則與水溫、水質改變有關。(二) 襀翅目群集在雨季期間,豐度、屬數與歧異度皆有下降的趨勢,九月份與調查起始月份之群集相似性最低; 十月份後各樣站襀翅目豐度、豐量、歧異度雖逐漸回升但並未恢復至雨季前之狀態,新石蠅屬的優勢度較雨季前高,造成樣站間群集相似性提高。(三) 以典型對應分析(CCA)前兩軸顯示,調查全期襀翅目群集變異可被解釋33.1%,不同攝食功能群在棲地利用上有所區隔。主要影響群集結構變化之環境變項為:固著大型底質、底棲流速變異系數、凋落物堆積量、水深變異系數。(四) 不同季節中, CCA前兩軸由環境變項所解釋的累積襀翅目群集變異量有所差異。雨季前及雨季中,生物變異與環境變動有高度關聯性;雨季後,生物變異與環境關聯性最低。推測限制生物移動、分佈的環境因素在雨季後受到緩解,故關聯性降低。端刺石蠅屬的棲地利用於不同季節間改變較大:端刺石蠅屬在雨季前、中與固著大型底質關係較為密切,雨季後則與固著大型底質無相關。本研究歸納出極端降雨事件造成溪流環境與襀翅目群集擾動,進而改變襀翅目群集與棲地環境的關聯性。隨著全球氣候變遷,降雨模式改變對溪流環境以及底棲生物群集所帶來的影響值得持續關注。

    Temporal distribution of rainfalls is the major cause for
    seasonal change in stream flow. Flood disturbances resulted from extreme rainy events alter stream habitats and benthic-invertebrate assemblage. This study aimed to understand the temporal variation of stonefly (Plecoptera)-habitat associations in Sakadang Stream, Taroko National Park. From April 2008 to April 2009, four sites along the stream were sampled monthly for stonefly nymphs and environmental variables. The stonefly-habitat associations were analyzed using ordination methods and the main results were the followings. (1) The habitat variations before September were mainly related to flow changes, but those after September were associated primarily with water quality and temperature as revealed by principle component analysis. (2) Similarity of stonefly assemblage between April and September, 2008, were lowest among all monthly samples. Abundance, species richness and evenness of the stonefly assemblage declined during the rainy season. After the rainy season, the diversity indices increased but did not recover to the pre-season level. The abundance of genus Neoperla dominated the assemblage and resulted in a low similarity among sites. (3) About 1/3 of the variations of stonefly assemblage from all samples could be explained by fixed giant substrate, the coefficient of variations (CV) of benthic flow velocity, the amount of leaf litter, and the CV of water depth as the results of Canonical Correspondence Analysis (CCA). Stonefly taxa with different feeding guilds were related to distinct habitat variables. (4) The stonefly-habitat relationships explained by the first two axes of CCA were stronger in the pre-rainy and mid-rainy seasons, while that in the post-rainy season was weak. It might be the constraints imposed by the floods in rainy season were relaxed so the strong relationships observed during the previous seasons were diluted. The habitat use of genus Cryptoperla also shifted after rainy season. Results of this study indicate that the stonefly-habitat associations may be altered by floods caused by extreme rainy events. As global temperature continues to rise and frequency of extreme rainfall increases, the long-term consequences of floods on stonefly assemblage and their habitats need to be closely monitored.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表次 VI 圖次 VII 附次 VIII 前言 1 材料與方法 4 壹、 樣區描述 4 貳、 調查與採樣 4 一、 棲地環境測量 4 二、 襀翅目群集採樣 5 三、 稚蟲鑑定 5 參、 統計分析 5 一、 降雨分佈與流量供給間的關係 5 二、 砂卡礑溪的環境特性與季節動態 6 三、 襀翅目群集結構 6 四、 群集結構之比較 7 五、 襀翅目全期、不同季節群集結構與環境變化之關係 7 結果 9 壹、 降雨分佈與流量供給間的關係 9 貳、 砂卡礑溪的環境特性與時間動態 9 參、 砂卡礑溪襀翅目群集結構動態 10 一、 砂卡礑溪襀翅目豐量、平均豐度、歧異度 10 二、 砂卡礑溪襀翅目群集相似性 11 肆、 襀翅目群集結構與環境關聯性 11 伍、 不同季節,襀翅目群集結構與棲地環境之關聯性 12 一、 雨季前襀翅目群集結構 12 二、 雨季中襀翅目群集結構 13 三、 雨季後襀翅目群集結構 14 討論 15 壹、 雨量變化與流量供給間的關係 15 貳、 砂卡礑溪的環境特性與時間動態 15 參、 襀翅目群集結構動態 17 肆、 調查全期襀翅目群集變異與環境關聯性 19 伍、 不同季節的襀翅目群集及其棲地利用 20 結論 24 參考文獻 25 表次 表一A-D、環境變項之代號及採樣方式。 33 表二、 調查期間所採砂卡礑溪襀翅目四科六屬八形態種之終齡稚蟲初步形態描述及其代號(附錄三)。 37 表三、砂卡礑溪研究期間各月份環境變項之主成分分析。 38 表四、砂卡礑溪不同樣站間環境之相似性係數分析(ANOSIM)檢測結果。 39 表五、調查期間砂卡礑溪襀翅目六屬各月份豐量與相對豐量變化。 40 各分類群代碼請見表二,總個體數(N)為六屬之個體數總和。 40 表六、 砂卡礑溪襀翅目香儂多樣性、辛普森歧異度指標與平均屬數三種群集參數與環境變項間的相關性。 41 表七、 砂卡礑溪研究樣站各月份與起始月份襀翅目群集之平均相異性及各主要類群之貢獻程度(SIMPER)。 42 表八、 砂卡礑溪各月份研究樣站間之襀翅目群集平均相似性及各主要類群之貢獻程度。 43 表九、不同樣站間襀翅目群集之相似性係數分析(ANOSIM)檢測結果。 44 表十、 砂卡礑溪研究樣站間襀翅目群集之相異性及各主要類群之貢獻程度(SIMPER)。 45 表十一、調查期間CCA排序軸特徵值、解釋生物變異與環境關聯性。 46 表十二、調查期間環境因子與CCA各排序軸樣站分數之相關係數。 47 表十三、雨季前CCA排序軸特徵值、解釋生物變異與環境關聯性。 48 表十四、雨季前環境因子與CCA排序軸相關系數。 49 表十五、雨季中CCA排序軸特徵值、解釋生物變異與環境關聯性。 50 表十六、雨季中環境因子與CCA排序軸相關系數。 51 表十七、雨季後CCA排序軸特徵值、解釋生物變異與環境關聯性。 52 表十八、雨季後環境因子與CCA排序軸相關系數。 53 圖次 圖一、砂卡礑溪研究樣站各月份調查日前28天之累積雨量(A)與極端降雨日數(B)。 54 圖二、砂卡礑溪研究樣站各月份環境變項之主成份分析排序圖。 55 圖三、以砂卡礑溪研究樣站環境相似性所繪之NMDS排序圖。 56 圖五、砂卡礑溪研究樣站各月份襀翅目群聚之整體香濃多樣性指標 (A)及各樣站分別之香濃多樣性指標(B)。 58 圖六、砂卡礑溪各樣站每月所採集之襀翅目稚蟲個體數(A)與屬數(B)之時間變化。 59 圖七、砂卡礑溪各樣站各月份之襀翅目四種優勢種相對豐量變化圖:樣站一(A)、樣站二 (B)、樣站三(C)與樣站四(D)。 60 圖八、砂卡礑溪各樣站襀翅目群聚之多維排序圖(NMDS)。 61 圖九、砂卡礑溪研究樣站全期襀翅目群集與環境變項之CCA雙序圖。 62 圖十、雨季前環境變項與襀翅目分類群之CCA雙序圖。 63 圖十一、雨季中環境變項與襀翅目分類群之CCA雙序圖。 64 圖十二、雨季後環境變項與襀翅目分類群之CCA雙序圖。 65 附次 附錄一、台灣產襀翅目5科15屬35種名錄。 66 附錄二、調查樣站於砂卡礑溪之分佈位置圖。 67 附錄三、砂卡礑溪所產之襀翅目四科六屬八形態種終齡稚蟲。 68 附錄四、研究期間富世氣象站降不同降雨事件之發生日數。 69 附錄五A - D、砂卡礑溪研究樣站各月份之平均水文測值。 70 附錄六A - D、砂卡礑溪研究樣站環境變項間的相關性。 74 附錄七A - C、砂卡礑溪研究樣站環境變項於微樣方間的相關性。 78

    參考文獻
    川合禎次,1985,日本產水生昆蟲檢索圖說。日本東海大學出版會,東京,共409頁。
    呂秀英, 2006,多變數分析在農業科技之應用。作物、環境與生物資訊(3):199-216頁。
    林怡萱 ,2008,太魯閣國家公園砂卡礑溪水棲昆蟲群聚結構研究。國立花蓮教育大學生物資源與科技研究所碩士論文。共155頁。
    邵廣昭,張廖年鴻,1998,南澳溪溪流生態資源調查報告。農林廳水土保持局。特有生物中心。共43頁。
    馬克平,劉玉明,1994,生物群落多樣性的測度方法 I α多樣性的測度方法 (下)。生物多樣性 2(4):231-239頁。
    許文昌,2004,太魯閣國家公園非生物環境監測立霧溪水質監測計畫。太魯閣國家公園管理處。共115頁。
    許皓捷,李培芬,2000, 台灣高山針葉林鳥類群聚與環境的關係. 第109-124頁, 楊南聰 (編輯). 太魯閣2000高山生態多樣性研討會論文集,內政部營建署太魯閣國家公園管理處。花蓮。
    陳佳正,盧孟明,2007:台灣極端降雨氣候事件 判定方法。大氣科學,35,105-118頁。
    曾晴賢,1992,太魯閣國家公園內區域內溪流動物之研究。太魯閣國家公園管理處,共64頁。
    曾晴賢,1995,太 魯 閣 國 家 公 園 砂 卡 礑 溪 魚 道 規 劃 之 研 究。太魯閣國家公園管理處,共30頁。
    黃國靖,2000,太魯閣國家公園水棲昆蟲相及相關生態研究。太魯閣國家公園管理處,共2頁。
    楊懿如,黃國靖,2005,太魯閣國家公園兩棲類及水棲昆蟲調查監測計畫。太魯閣國家公園管理處,共91頁。
    經濟部水利署,2007,雨量年報。台灣水文年報,共286頁。
    經濟部水利署,2008,雨量年報。台灣水文年報,共295頁。
    蘇霩靄,1999,立霧溪人工壩體對水域生態之影響。太魯閣國家公園管理處,共35頁。
    Allan, J. D., & Castillo. M. M. (2007). Stream Ecology: Structure and Function of Running Waters. 2end Edition Springer, Dordrencht. pp. 57-74
    Attrill, M. J. (2002). Community level indicators of stress in aquatic ecosystems. In: Adams, S.M. (Eds.). Biological Indicators of Aquatic Ecosystem Stress. American Fisheries Society, Bethesda pp. 473-508.
    Banks, N. (1937). Perlidae, in Neuropteroid insects from Formosa. Phil. J. Sci. 26: 267-275.
    Baumann, R. W. (1975). Revision of the Stonefly Family Nemouridae (Plecoptera): a Study of the World Fauna at the Generic Level. Smithsonian Institution Press, Washington. iii + 74 pp.
    Biggs, B. J. F. & Kilroy, C. (2000). Stream periphyton monitoring manual. The New Zealand Ministry for the Enviroment, Christchurch. pp. 39-74
    Biggs, B. J. F., Smith, R. A. & Duncan, M. J.(1999) Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. Journal of the North American Benthological Society 18: 222–241.
    Bovee, K. D. & Milhous, R. T. (1978). Hydraulic simulation in instream flow studies: Theory and techniques. Instream Flow Information Paper NO.5. Washington DC: US. Fish and Wildlife Service, OBS78, 33: 1-131.
    Bruns, D. A., Minshall, G. W., Gushing, C. E., Cummins, K. W., Brock, J. T. & Vannote, R. L. (1984). Tributaries as modifiers of the river continuum concept: analysis by polar ordination and regression models. Arch. Hydrobiology 99: 208-220.
    Clarke, K. R., & Gorley R. N. (2001). PRIMER v5:: User Manual//Tutoria1. .[M]Plymouth:PRIMER-—E Ltd., Plymouth.
    Cummins, K. W. & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology, Evolution, and Systematics. 10: 147-172.
    Cummins, K.W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology 18: 183-206.
    Death, R. G. (1996). The effect of patch disturbance on stream invertebrate community structure: the influence of disturbance history. Oecologia 108: 567-576.
    Death, R. G. (2002). Predicting invertebrate diversity from disturbance regimes in forest streams. Oikos. 97(1):18-30
    Downes, B. J., & Street, J. L., (2005). Regrowth or dispersal? Recovery of a freshwater red alga following disturbance at the patch scale. Austral Ecology 30: 526-36.
    Fisher, S. G., Gray, L. J., Grimm,N. B., & Busch, D. E. (1982). Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs 52: 93–110.
    Fochetti, R. & Tierno de Figueroa, J. M. (2008). Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiologia 595: 365–377.
    Frissell, C. A., Liss, W. J., Warren, C.E. & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.
    Fuller, R. L., & Stewart, K. W. (1977). The food habits of stoneflies in the Upper Gunnison River, Colorado. Environmental Entomologist 6:293-302.
    Fuller, R. L., & Stewart, K. W. (1979). Stonefly (Plecoptera) food habits and prey preference in the Dolores River, Colorado. American Midland Naturalist 101: 170-181.
    Giller, P. S. and B. Malmqvist. 1998. The Biology of Streams and Rivers. Oxford University Press, New York.
    Gislason, G. M., Halbach, U., & Flechtner, G. (1990).Strong effects of fraging minnows on a stream benthic invertebrate community. Ecology 70: 445-452.
    Hilsenhoff, W. L. (1988). Rapid field assessment of organic pollution with family-level biotic index. Journal of the North American Benthological Society 7(1): 65- 68.
    Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989) . The flood pulse concept in river-floodplain systems. In: Dodge, D.P. (Eds.) Proceedings of the International Large Rivers Symposium (LARS). Canadian Special Publication in Fisheries and Aquatic Sciences 106: 110-127.
    Kawai, T. (1968). Stoneflies (Plecoptera) from Taiwan in the Bishop Muesum, Honolulu. Pacific Insects 10: 241- 248.
    Klapálek F. (1921). Plecoptera II. noveaux, Annales de la Société Entomologique de Belgique 61: 57-67.
    Klapálek, F. (1912.) H. Sauter's Formosa-Ausbeute. Plecoptera. Entomologische Mitteilungen 1: 342-351.
    Klapálek, F. (1913.) Plecoptera II. (H. Sauters Formosa-Ausbeute.) Supplementa Entomlogica 2: 112-127.
    Klapálek, F. (1923). Plecoptera II. Fam. Perlidae. Colls zool. Baron Edm. DC Selys Longchamps 4: 1-193.
    Kobayashi, S. & Kagaya, T. (2002). Differences in litter characteristics and macroinvertebrate assemblages between litter patches in pools and riffles in a headwater stream. Limnology 3:37–42
    Kolasa, J., & Rollo, C. D. (1991). Introduction: the heterogeneity of heterogeneity: a glossary. In Kolasa, J., & Pickett, S. T. A. (Eds). Ecological heterogeneity. Springer-Verlag, New York. pp. 1-23
    Krebs, C.J. (1989). Ecological methodology. Harper Collins Publishers, New York.
    Lake, P.S. (2000). Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19: 573-592.
    Lepori, F., & Hjerdt, N. (2006). Disturbance and aquatic biodiversity: rec¬onciling contrasting views. Bioscience 56, 809-818.
    Lepš, J. & Šmilauer, P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.
    Likens, G.E., Bormann, F.H., Johnson, N. M., Fisher, D. W., & Pierce , R. S. (1970). Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecological Monographs 40: 23–47.
    Liu, S. C., Fu, C., Shiu, C. J., Chen, J. P., & Wu, F. (2009). Temperature dependence of global precipitation extremes, Geophysical Research Letters, 36, L17702
    Lytle, D. A. & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution 19, 94–100.
    Lytle, D. A. & White, N. J. (2007). Rainfall cues and flash-flood escape in desert stream insects. Journal of Insect Behavior 20, 413–423.
    Lytle, D. A. (2008). Life-history and behavioural adaptations of aquatic insects in disturbed environments. In J. Lancaster and R. Briers (Eds.) CABI International, London pp. 122-138
    Lytle, D. A., Bogan, M. T., & Finn, D. S. (2008). Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society B: Biological Sciences 275: 453–462
    Matthaei, C. D., Uehlinger, U., Meyer, E. I. & Frutiger, A. (1996). Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biology 35: 233-248.
    McGregor, G. R., & Nieuwolt, S. (1998). Tropical Climatology: An Introduction to the Climates of the Low Latitudes. 2nd Edition. Wiley, Chichester.
    Merritt, R.W., & Cummins, K.W. (1996). An Introduction to the Aquatic Insects of North America. 3rd ed. Kendall-Hunt Publishing Company, Dubuque, Iowa.
    Minshall, G.W., Andrews D.A., & Manuel-Faler C.Y. (1983) Application of island biogeography theory to streams, macroinvertebrate recolonization of the Teton River, Idaho. In J.R. Barnes & G.W. Minshall (Eds) Stream Ecology, Applications and Testing of General Ecological Theory. Plenum Press, New York, pp. 279-297.
    Minshall, G. W., Cummins, K. W., Petersen, R. C., Cushing, C. E., Bruns, D. A., Sedell, J. R., & Vannote, R. L. (1985). Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.
    Miserendino, M. L. (2006). Seasonal and spatial distribution of stoneflies in the Chubut River (Patagonia, Argentina) Hydrobiologia. 568:263–274.
    Montgomery, D. R. (1999). Process domains and the river continuum concept. Journal of the American Water Resources Association 35: 397–410.
    Okamoto, H. (1922). Zweiter Beriter Beitrag zur Kenntnis der japanischen Plecopteren. Bull. Agr. Exp. Sta. Chosen 1: 1-46.
    Palmer, M. A. & Poff, N. L. (1997) The influence of environmental heterogeneity on patterns and processes in streams. Journal of the North American Benthological Society, 16, 169–173.
    Palmer, M. A., Hakenkamp, C. C., & Nelson-Baker, K. (1997) Ecological heterogeneity in streams: why Variance matters. Journal of the North American Benthological Society, 16:( 1), 189-202
    Pennuto, C. M. (2003). Seasonal differences in predator-prey behavior in experimental streams. American Midland Naturalist 150:254-267.
    Pickett, S. T. A., Parker, V. T., & Fiedler, P. L. (1992). The new paradigm in ecology: implications for conservation biology above the species level. Chapman and Hall, New York
    Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers : Benthic macroinvertebrates and fish. EPA/444/4-89-001. US. Environmental Protection Agency, Washington, DC.
    Poff, N. L., Allan, J. D., Bain, M.B., Karr, J.R., Prestegaard, K. L., Richter, B.D., Sparks, R.E., & Stromberg, J.C. (1997). The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.
    Rempel, L. L., Richardson, J. S., & Healey, M. C. (1999). Flow refugia for benthic macroinvertebrates during flooding of a large river. Journal of the North American Benthological Society 18:34-48.
    Robertson, A. L., Lancaster, J., & Hildrew, A. G. (1995). Stream hydraulics and the distribution of microcrustacea: A role for refugia? Freshwater Biolology 33: 469–484.
    Robinson, C. T. & Uehlinger, U. (2003) Using artificial floods for restoring river integrity. Aquatic Sciences, 65: 181-182.
    Robinson, C. T., Uehlinger, U. & Monaghan, M.T. (2003) Effects of a multi-year experimental flood regime on macroinvertebrates downstream of a reservoir. Aquatic Sciences, 65, 210-22.
    Shimizu, T. (1997a). Two new species of the Genus Amphinemura from Japan and Taiwan ( Plecoptera, Nemouridae ). Jpn. J. Syst. Ent. 3: 77-84.
    Shimizu, T. (1997b). The species of the Nemoura ovoceria Group (Plecoptera: Nemouridae). Aquatic Insects 19(4): 193-218.
    Shimizu, T., & Sivec, I. (2001). Sphaeronemoura, A New Genus of the Amphinemurinae (Nemouridae, Plecoptera) from Asia. Trends in Reseach in Ephemeroptera and Plecoptera. Eduted by E. Dominguez, Kluwer Academic/plenum publishers.
    Shiu, C. J., Liu, S. C. & Chen, J. P., (2009). Diurnally asymmetric trends of temperature, humidity and precipitation in Taiwan, Journal of Climate, 22, doi:10.1175/2009JCLI2514.1.
    Sivec, I, & Zwick, P. (1987). Some Neoperla from Taiwan (Plecoptera: Perlidae). Beitrage zur Entomologie, Berlin 37: 391-405.
    Sivec, I. & Yang, P. S. (2001). Stoneflies of Taiwan within the oriental stonefly fauna diversity. In Domı´nguez E. (ed.), Trends in Research in Ephemeroptera and Plecoptera. Kluwer Academic/ Plenum Publishers, New York 401–404.
    Sivec, I. & Yule, C. M. (2004) Insecta: Plecoptera. In: Yule, C. M., & Sen, Y. H., (Eds.), Freshwater invertebrates of Malaysian Region. Academy of Sciences, Malaysia. pp. 443-456.
    Sivec, I., Stark, B. P., & Uchida, S. (1988). Synopsis of the World Genera if Perlinae (Plecoptera: Perlidae) Scopolia 16: 1-66.
    Stark, B. P. & Sivec, I. (2007). Taiwanese species of Cryptoperla (Plecoptera: Peltoperlidae). Illiesia 3(14): 150-156.
    Stark, B. P., & Sivec .I. (1991). Descriptions of Oriental Perlini (Plecoptera: Perlidae). Aquatic Insects 13: 151-160.
    Stewart, K.W., & Stark, B. P. (1988). Nymphs of North American stonefly genera (Plecoptera). Entomological Society of America. Thomas Say Foundation 12.
    Stewart, K.W., & Stark, B. P. (1993). Nymphs of North American Stonefly Genera (Plecoptera). University of North Texas Press. Denton, TX.
    Suren, A. M., & Duncan, M. J. (1999) Rolling stones and mosses: effect of substrate stability on bryophyte communities in streams. Journal of the North American Benthological Society 18: 457-467.
    Ter Braak, C. J. F., & Smilauer, P. (2002): CANOCO Reference Manual and CanoDraw forWindows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY: Microcomputer Power,
    Thorp, J.H., & Delong, M. D. (1994). The riverine productivity model: an heuristic view of carbon sources and organic processing in large riverecosystems. Oikos 70: 305–308.
    Townsend C. R., Hildrew, A. G., & Schofield, K. (1987) Persistence of stream invertebrate communities in relation to environmental variability. Journal of Animal Ecology, 56: 597-613.
    Townsend C.R. (1989). The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8: 36–50.
    U.S. Environmental Protection Agency (U.S. EPA)., (2008) Climate change effects on stream and river biological indicators: A preliminary analysis. Global Change Research Program, National Center for Environmental Assessment, Washington, DC; EPA/600/R-07/085.
    Uchida, S., & Isobe, Y. (1989). Styloperlidae, stat. nov. and Microperlinae, subfam. nov. with a revised system of the family group systellognatha (Plecoptera). Spixiana 12:145‐182.
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.
    Ward, J. V., & Stanford J. A. (1983). The serial discontinuity concept of lotic ecosystems. In T.D. Fontaine III, & S.M. Bartell (Eds). Dynamics of Lotic Ecosystems, Ann Arbor Science: Ann Arbor, Michigan, USA. pp. 29 -42
    Weidner, H. (1962). Ordnung: Plecoptera. In: Die entomologischen Sammlungen des Zoologiscen Staatsinstitutcs und Zoologischen Museums Hamburg. IV. Teli, Insecta I. Mitteilungen Hamburgisches Zoologisches Museum und Institut 60: 81-109.
    White, M. M., & Lichtwardt R. W. (2004). Fungal symbionts (Harpellales) in Norwegian aquatic insect larvae. Mycologia 96:891–910
    Wiens, J. A. (1984). On understanding a non-equilibrium world: myth and reality in community pat- terns and processes. In Strong, D.R., Simberloff, D., Abele, L.G., & Thistle, A.B. (Eds). Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, New Jersey. pp. 439-457
    Wiggins, G. B., Mackay, R. J., & Smith, I. M. (1980). Evolutionary and ecological strategies of animals in annual temporary pools. Archiv fuer Hydrobiologie 58: 97–206.
    Williams, D. D. (1996) Environmental constraints in temporary fresh waters and their consequences for the insect fauna. Journal of North American Benthological Society 15: 634–650.
    Williams, D. D., and B. W. Feltmate. 1992. Aquatic Insects. CAB International. xiii, 358pp.
    Zwick, P. (1982). The collection of F. Klapálek in Prague, with notes on the Nemouridae (Plecoptera). Aquatic Insects 4: 39-48.
    Zwick, P. (1988). Notes on Plecoptera (16) Tylopyge Klapálek, a synonym of Paragnetina Klapálek. Aquatic Insects 10: 201-203.
    Zwick, P. (1996) Variable egg development of Dinocras spp (Plecoptera: Perlidae) and the stonefly seed bank theory. Freshwater Biology 35: 81–99
    Zwick, P. (2000). Phylogenetic System and Zoogeography of the Plecoptera. Annual Review of Entomology 45: 709–746.

    下載圖示 校內:立即公開
    校外:2011-09-03公開
    QR CODE