簡易檢索 / 詳目顯示

研究生: 許家瑋
Hsu, Chia-Wei
論文名稱: 探討具有帝盟多所誘導產生抗藥性的神經膠質母細胞瘤潛在的生存機制
Potential Glioblastoma cell survival mechanisms in Temozolomide-induced resistance
指導教授: 司君一
Sze, Chun-I
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 35
中文關鍵詞: 神膠質母細胞瘤帝盟多細胞凋亡細胞自蝕細胞週期停滯
外文關鍵詞: Glioblastoma multiforme (GBM), Temozolomide (TMZ), Apoptosis, Cellular senescence, Autophagy, Cell cycle arrest
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經膠質母細胞瘤(GBM)是由異常的星狀膠細胞所組成,在世界衛生組織中定義為第四級的膠質瘤,為最常見也是最惡性的原發性腦瘤,目前的研究顯示,得到神經膠質母細胞瘤的病人統計上中間的生存期( median survival )大約是15個月左右,5年以上的生存率小於4%。帝盟多(TMZ)是目前為止最為廣泛用於治療神膠質母細胞瘤的第一線用藥,目前的研究已表明帝盟多的治療可以誘導細胞凋亡,自體吞噬,細胞衰老和細胞週期阻滯。帝盟多的治療效果好壞很大的程度取決於O6-methylguanine–DNA methyltransferase (MGMT)這個蛋白質的表現量,不過目前對於神膠質母細胞瘤是如何抵抗帝盟多治療相關的機制還不太清楚。所以本實驗想要探討神經膠質母細胞瘤抵抗帝盟多治療的相關機制。我們使用1306-MG (人類神經膠質母細胞瘤細胞株)和CNS-1 (大鼠神經膠質母細胞瘤細胞株)這兩種不同的細胞株,來連續給予帝盟多並且利用細胞計數的方法篩選生長抑制50%存活下來的細胞而選出具有抗藥性的神膠質母細胞瘤細胞株。在建立具有帝盟多抗性的神膠質母細胞瘤細胞株的過程中,我們利用西方墨點法觀察MGMT的蛋白質表現量; 原位末端轉移酶技術和西方墨點法來觀察細胞凋亡; 利用免疫螢光染色和西方墨點法觀察細胞自噬作用; β-半乳糖苷酶活性比色法和西方墨點法觀察細胞老化; 細胞流式儀觀察細胞週期的改變; 明膠酶譜法觀察MMP-9的活性。在神膠質母細胞瘤細胞株對於帝盟多產生抗藥性的過程中我們發現MGMT蛋白質表現量在兩種細胞株中都沒有發生改變,細胞凋亡的比例降低,細胞老化的比例降低,細胞自蝕的比例增加,細胞週期的停滯從G2/M 時期進入G0/G1時期,MMP-9的活性增加,這也代表著MGMT在我們選用的細胞株中這個蛋白質未參與抗藥性產生的調控,而以上所觀察的現象改變可能參與抗藥性的產生。綜合以上之結果,可以發現細胞凋亡,細胞凋亡,細胞自蝕,細胞週期的停滯等改變都可能是導致神膠質母細胞瘤對於帝盟多產生抗藥性的重要原因。

    WHO defines the Glioblastoma multiforme (GBM) as a grade IV glioma, which is the most common and hostile malignant primary brain tumor in human population. Previous studies showed that the GBM median survival is less than 15 months. The 5 year survival rate is less than 4%. Temozolomide (TMZ) is one of the most widely used drugs to treat GBM. Recently, it has been showed that TMZ treatment can induce apoptosis, autophagy, cell senescence and cell cycle arrest depend on MGMT expression level. However, the TMZ-induced resistance formation mechanism remains unclear. This study intends to establish two TMZ-induced resistance cell lines and test the role of apoptosis, cell senescence, autophagy and cell cycle arrest in their survival and death. The 1306-MG (human GBM), CNS-1 (rat GBM), and human astrocyte cell lines were used for establish TMZ-induced resistance (TIR) model. All of these cell lines were checked for MGMT expression level by immunoblotting. Trypan Blue Exclusion Assay (TBEA) method and cell counting were used to assess cell viability. Furthermore, TUNEL was used to observe apoptosis, LC3 staining was used to observe autophagy, SA-βGal was used to observe cell senescence, and zymography was used to observe MMP-9 activity, and cell flow-cytometry was used to determine cell cycle change. The MGMT expression levels of TIR GBM were not changed through generation of resistance. The cell viability increased through establishment of TIR accumulation under same concentrations of TMZ treatment; TIR significantly reduced the numbers of senescence cells in 1306-MG and CNS-1 TIR cell; the autophagy level and MMP-9 activity of TIR-GBM were elevated in 1306-MG and CNS-1 cells with generation of TIR cell; TIR cells showed significantly decreased SubG1 phase of cell cycle through generation of TIR cell, while both 1306-MG and CNS-1 showed decreased cell cycle distribution of S and G2/M phases. We had established 1306-MG and CNS-1 TMZ-induced resistance model. We also found that TIR formation accompanied with decreased apoptosis, diminished cellular senescence, arising autophagy, cell cycle arrest at G0/G1 phase, and increased MMP-9 activity. We conclude apoptosis, autophagy, cellular senescence, and cell cycle arrest all participate in the development of TMZ-induced resistance.

    Chinese Abstract ………………………………………………………………I English Abstract ……………………………………………………………II Acknowledgements ……………………………………………………………IV Table of Contents ……………………………………………………………V Introduction ……………………………………..…………...………….1 Objective and specific aims …………………………………6 Materials and Methods …………………………………………………7 Result …………………………………………………………….……....………12 Discussion …………………………………………………………….………. 15 Conclusion ……………………………………………………………………...18 References ……………………………………………………………………...19 Figures …………………………………………………………………………....22

    1. Hadjipanayis, C.G. and E.G. Van Meir, Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med, 2009. 15(11): p. 519-30.
    2. Ohgaki, H. and P. Kleihues, Epidemiology and etiology of gliomas. Acta Neuropathol, 2005. 109(1): p. 93-108.
    3. Schwartzbaum, J.A., et al., Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol, 2006. 2(9): p. 494-503; quiz 1 p following 516.
    4. Van Meir, E.G., et al., Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 2010. 60(3): p. 166-93.
    5. Stupp, R., et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol, 2009. 10(5): p. 459-66.
    6. Zhang, J., M.F. Stevens, and T.D. Bradshaw, Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol, 2012. 5(1): p. 102-14.
    7. Ramirez, Y.P., et al., Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth. Mol Cancer Ther, 2014.
    8. Wang, Y., et al., Anatomical specificity of O6-methylguanine DNA methyltransferase protein expression in glioblastomas. J Neurooncol, 2014. 120(2): p. 331-7.
    9. Villalva, C., et al., O6-Methylguanine-Methyltransferase (MGMT) Promoter Methylation Status in Glioma Stem-Like Cells is Correlated to Temozolomide Sensitivity Under Differentiation-Promoting Conditions. Int J Mol Sci, 2012. 13(6): p. 6983-94.
    10. Haar, C.P., et al., Drug resistance in glioblastoma: a mini review. Neurochem Res, 2012. 37(6): p. 1192-200.
    11. Monti, D., et al., Apoptosis--programmed cell death: a role in the aging process? Am J Clin Nutr, 1992. 55(6 Suppl): p. 1208S-1214S.
    12. Raffray, M. and G.M. Cohen, Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Ther, 1997. 75(3): p. 153-77.
    13. Lin, C.J., et al., Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med, 2012. 52(2): p. 377-91.
    14. Haemmig, S., et al., miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas. Cell Death Dis, 2014. 5: p. e1279.
    15. Hayflick, L., THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res, 1965. 37: p. 614-36.
    16. Serrano, M., et al., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602.
    17. Mason, D.X., T.J. Jackson, and A.W. Lin, Molecular signature of oncogenic ras-induced senescence. Oncogene, 2004. 23(57): p. 9238-46.
    18. Bodnar, A.G., et al., Extension of life-span by introduction of telomerase into normal human cells. Science, 1998. 279(5349): p. 349-52.
    19. Woo, R.A. and R.Y. Poon, Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev, 2004. 18(11): p. 1317-30.
    20. Gil, J. and G. Peters, Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol, 2006. 7(9): p. 667-77.
    21. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9363-7.
    22. Sharpless, N.E. and R.A. DePinho, Cancer: crime and punishment. Nature, 2005. 436(7051): p. 636-7.
    23. Knizhnik, A.V., et al., Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One, 2013. 8(1): p. e55665.
    24. Lefranc, F. and R. Kiss, Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus, 2006. 20(4): p. E7.
    25. Furnari, F.B., et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007. 21(21): p. 2683-710.
    26. Ziegler, D.S., A.L. Kung, and M.W. Kieran, Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol, 2008. 26(3): p. 493-500.
    27. Kanzawa, T., et al., Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ, 2004. 11(4): p. 448-57.
    28. Collins, K., T. Jacks, and N.P. Pavletich, The cell cycle and cancer. Proc Natl Acad Sci U S A, 1997. 94(7): p. 2776-8.
    29. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
    30. Niida, H., et al., Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO J, 2010. 29(20): p. 3558-70.
    31. Schmitt, E., et al., DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B, 2007. 8(6): p. 377-97.
    32. Zhang, J., et al., N3-Substituted Temozolomide Analogs Overcome Methylguanine-DNA Methyltransferase and Mismatch Repair Precipitating Apoptotic and Autophagic Cancer Cell Death. Oncology, 2015. 88(1): p. 28-48.
    33. Hammond, L.A., et al., Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J Clin Oncol, 1999. 17(8): p. 2604-13.
    34. Zhang, J., et al., Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications. Oncology, 2010. 78(2): p. 103-14.

    無法下載圖示 校內:2020-02-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE