簡易檢索 / 詳目顯示

研究生: 蒲一鋒
Pu, Yi-Feng
論文名稱: 複合圓錐層殼軸對稱問題之三維彈性力學解析
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 52
中文關鍵詞: 複合層殼軸對稱
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文根據三維彈性力學理論,藉由微擾法推導出複合圓錐層殼受軸對稱負載之三維漸近解析理論。
    首先,將三維彈性力學基本方程式重新組合,以位移場及橫向應力為主要變數,消去曲面應力場量,將各場量做適當的無因次化處理,選定一微小參數,使用漸近展開法,將各場量展開成與其微小參數相關之冪級數形式,原三維控制方程式可分離成對應與該微小參數所對應之不同階數的控制方程式,由低階至階,循序將各方程式沿厚度方向積分,可導得具遞迴特性之控制方程式。各階的控制方程式皆須搭配合宜的邊界條件,藉由變分方法推衍出邊界條件之合力形式。此邊界值問題,配合廣義的微分近似法,可得各階場量。低階場量可為高階修正場量之變數求解依據,如此逐階循環修正終可求得收斂之精確解。
    文中所推得複合圓錐層殼受軸對稱負載之三維漸近理論,討論兩端為簡支承受側向壓力與一端為固定端其自由端承受一扭矩作用下兩種不同軸對稱問題之數值範例,其結果與文獻中標準驗證問題之精確解印証,不論在收斂性及精度上均顯示合理。

    none

    摘要 Ⅰ 致謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1.1 研究動機 1 1.2 研究內容 2 第二章 三維漸近解析理論 2.1 三維彈性力學方程式 4 2.2 無因次化 7 2.3 漸近展開 10 2.4 逐次積分 12 第三章 邊端條件 17 第四章 應用於cross-ply複合圓錐殼軸對稱問題 20 4.1 兩端為簡支承的複合圓錐殼受均勻及正弦函數側向壓力之分析 20 4.2 一端為固定端的複合圓錐殼其自由端承受一扭矩作用之分析 22 第五章 數值範例的比較說明 24 5.1 兩端為簡支承的複合圓柱層殼受正弦函數側向壓力之分析 24 5.2 兩端為簡支承的複合圓錐層殼受正弦函數及均勻側向壓力之分析 24 5.3 一端為固定端的複合圓錐層殼其自由端承受一扭矩之分析 25 第六章 結論 27 參考文獻 29 附錄A 31 附錄B 33 附錄C 34 表 1 複合圓柱均向層殼受正弦函數側壓力之應力與位移 (L/R1=1),α=π/6) 36 表 2 [90/0/90]複合圓錐層殼受均勻側壓力之應力與位移 (L/R1=4,α=π/6) 38 表 3 [90/0/90]複合圓錐層殼受均勻側壓力之應力與位移 (L/R1=4,α=π/3) 39 表 4 複合圓錐層殼受均勻側壓力之中曲面位移 (L/R1=4,N=33) 40 表 5 [90/0/90]複合圓錐層殼自由端受一紐矩作用之應力與位移 (L/R1=4,α=π/6) 41 表 6 [90/0/90]複合圓錐層殼自由端受一紐矩作用之應力與位移 (L/R1=4,α=π/3) 42 表 7 複合圓錐層殼自由端受一紐矩作用之中曲面位移 (L/R1=4,N=15) 43 圖 1-a 受均勻側壓力之複合圓錐層殼與正交曲線座標示意圖 44 圖 1-b 受扭矩作用之複合圓錐層殼示意圖 45 圖 2 [90/0/90]複合圓錐層殼受正弦函數側壓力之 曲面正向應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 46 圖 3 [90/0/90]複合圓錐層殼受正弦函數側壓力之 曲面正向應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 47 圖 4 [90/0/90]複合圓錐層殼受正弦函數側壓力之 橫向剪應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 48 圖 5 [90/0/90]複合圓錐層殼受正弦函數側壓力之 橫向剪應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 49 圖 6 [0/90/0]複合圓錐層殼其自由端受一扭矩之 曲面剪應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 50 圖 7 [0/90/0]複合圓錐層殼其自由端受一扭矩之 曲面剪應力 沿厚度方向之變化(R1/2h=10,L/R1=4) 51 圖 8 [0/90/0]複合圓錐層殼其自由端受一扭矩之 位移 沿厚度方向之變化(R1/2h=10,L/R1=4) 52

    Bellman R, Casti J (1971) Differential quadrature and long-term integration. J. Math. Anal. Appl. 34: 235_238
    Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comp. Phys. 10: 40_52
    Chandrashekhar K, Karekar MS (1992a) Bending analysis of a conical shell panel. Int. J. Solids Struct. 12(2): 101_116
    Chandrashekhar K, Karekar MS (1992b) Bending analysis of a truncated conical shell subjected to asymmetric load. Thin-Walled Struct. 13: 299_318
    Chandrashekhara K, Kumar BS (1993) Static analysis of a thick laminated circular cylindrical shell subjected to axisymmetric load. Compos. Struct. 23: 1_9
    Cui W, Pei J, Zhang W (2001) A simple and accurate solution for calculating stresses in conical shells. Comput. & Struct. 79: 265_279
    Du H, Lim MK, Lin RM (1994) Application of generalized differential quadrature method to structural problems. Int. J. Numer. Methods Eng. 37: 1881_1896
    Fl W (1960) Stresses in shells. Springer-Verlag, New York, pp. 377_385
    Huang NN, Tauchert TR (1992) Thermal stresses in doubly-curved cross-ply laminates. Int. J. Solids Struct. 29: 991_1000
    Kewei D, Limin T (1998) Exact thermoelastic solution for an axisymmetric problem of thick closed laminated shells. J. Thermal Stresses 21:751_761
    Pei J, Harik IE (1990) Iterative FD solution to bending of axisymmetric conical shells. J. Struct. Engrg. ASCE 116(9): 2433_2446
    Shu C (1996) Free vibration analysis of thin cylindrical shells by the differential quadrature method. J. Sound Vibr. 194(4): 587_604
    Soldatos KP, Ye JQ (1994) Three-dimensional statis, dynamic, thermoelastic and buckling analysis of homogeneous and laminated composite cylinders. Compos. Struct. 29: 131_143
    Tavares SA (1996) Thin conical shells with constant thickness and under axisymmetric load. Comput. & Struct. 60(6): 895_921
    Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York, pp. 533_568
    Washizu K (1982) Variational methods in elasticity & plasticity. Pergamon Press, New York, pp. 306_333
    Wu CP, Tarn JQ, Chi SM (1996a) Three-dimensional analysis of doubly curved laminated shells. J. Engrg. Mech. ASCE 122: 391_401
    Wu CP, Tarn JQ, Chi SM (1996b) An asymptotic theory for dynamic response of doubly curved laminated shells. Int. J. Solids Struct. 33: 3813_3841

    下載圖示 校內:2004-07-10公開
    校外:2004-07-10公開
    QR CODE