簡易檢索 / 詳目顯示

研究生: 蔣奕群
Chiang, Yi-Chun
論文名稱: 鋁/氧化銅奈米線熱劑之合成法研發與反應特性分析
Assembly and the Reaction Characteristic of Al/CuO Nanowire Thermite
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 奈米熱劑合成電泳沉積奈米線熱劑氧化銅奈米線
外文關鍵詞: Nanothermite, Thermite Reaction, Electrophoretic Deposition, Copper Oxide Nanowires
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米熱劑之高放熱熱劑反應,所產生之單位體積或單位重量的反應物所產生的反應熱都遠高於RDX或TNT等高爆藥。我們於本研究中提出一項創新之鋁/氧化銅奈米熱劑合成法,並探討其反應特性。合成步驟中首先採用線徑75微米的銅線,置放於爐溫400到600°C之間的高溫爐內,在恆溫2到4個小時的環境下進行熱氧化,於銅線表面生成氧化銅奈米線陣列,並利用掃描式電子顯微鏡觀察氧化後的銅線表面與斷面形貌,做為熱氧化實驗參數的篩選,氧化後的銅線斷面,由內到外分別為:未氧化的銅芯、Cu2O層、CuO層、氧化銅奈米線。鋁材選用50和100奈米的鋁粉粉體做為原料,以電泳沉積的方式將奈米鋁粒子沉積於氧化銅奈米線陣列的空隙之中。本研究配製3:1的乙醇/水溶液做為奈米鋁粒子之分散介質,鋁粉倒入乙醇水溶液後將液體進行2.5分鐘的間歇性超音波震盪,讓懸浮液中的鋁粒子能夠均勻的分散於其中。震盪後的液體被倒入電泳裝置中,施加不同電壓差或改變電泳時間,進行鋁粉粒子的電泳沉積,而沉積厚度會隨著電壓差或時間增加而變厚。
    完成電泳沉積後,本研究採用示差掃描量熱法進行奈米熱劑的可行性進行驗證和反應特性量測。奈米熱劑於氮氣或氬氣的環境下由室溫開始,以10°C/min的升溫速率加熱,紀錄奈米熱劑隨溫度上升的熱流曲線。以80伏特,10秒的條件所合成的奈米熱劑在氬氣環境下加熱,可成功在388°C點燃反應,根據DSC曲線,此反應有兩個放熱峰,分別位於鋁的熔點前後。第一個放熱峰於529°C達到最大,而放熱峰值於566°C時發生,於642°C結束。在第一個反應結束過後剩餘的鋁熔化,在660°C時產生吸熱峰值。在鋁熔化之後,液態鋁與CuO和Cu2O層再次引發反應,產生第二個放熱峰,峰值在760°C發生。第一個放熱峰量測值為1921 J/g,第二個放熱峰的量測值為1187 J/g,合計為3108 J/g。本實驗也利用高速攝影機記錄燃燒測試的過程,奈米熱劑可由點火槍於底部點燃後產生由下往上的反應傳遞現象。反應傳遞過程中會有煙霧出現於反應區域,也會有部分熔融態的產物由反應區滴落。在80伏特的電壓下電泳時間大於15秒,可合成出能夠自行傳遞反應的奈米熱劑,而反應速度於電泳時間為20秒,傳遞速度有較大值,落於39.3 ± 2.4 cm/s 之間。

    Assembly methodology and reaction characteristic of Al/CuO nanothermite have been discussed in this research. Copper oxide nanowires were first grown on copper wires of 75 μm in diameter via thermal oxidation in box furnace at various temperatures and duration. Surface morphology and cross section of copper wires were observed by scanning electron microscope after thermal oxidation. The layers under CuO nanowires are CuO layer, Cu2O layer and copper core respectively. The size of the aluminum nanoparticles was 50 or 100 nm in diameter. Aluminum particles were driven into the gaps in the array of CuO nanowires through electrophoretic deposition as assembly method of nanothermite. Aluminum particles were add into 3:1 ethanol/water solution as electrophoretic colloid. Various voltage difference was exerted for different duration to drive Aluminum particles. Deposition layer thickness grows with voltage difference or electrophoretic duration. Differential scanning calorimetry shows thermite reaction was fully ignited at 388°C in argon purged furnace. Exothermic reaction peaks at 566°C. An endothermic peak at 660°C was found due to melting of aluminum. The second heat release peak should then be the result of the reaction between liquid phase aluminum and solid copper oxides. Thermite assembled via 80V electrophoretic deposition with duration shorter than 15 sec cannot propagate reaction along copper wire after ignition. Reaction propagation speed along the nanothermite wire with 80 V and 20 sec electrophoretic deposition was the highest. The propagation velocity was 39.3 ± 2.4 cm/s.

    摘要 i Extended Abstract ii 致謝 vi 目錄 vii 圖目錄 x 表目錄 xiii 符號列表 xiv 第1章 緒論 1 1-1 研究動機與背景 1 1-2 文獻回顧 2 奈米熱劑製備方法 2 反應特性測試 5 1-3 研究目的 8 1-4 本文架構 9 第2章 原理與設備 10 2-1 合成材料 10 奈米鋁粉 10 銅線 13 材料之物理與熱力性質 17 2-2 熱氧化法 17 熱氧化法原理 17 高溫爐 18 2-3 奈米粒子介面電位與粒徑量測 21 電雙層理論 21 介面電位量測原理 23 粒徑量測原理 24 Brookhaven ZetaPALS 介面電位與粒徑量測儀 24 2-4 電泳沉積 25 電泳沉積原理 25 電泳沉積系統 28 2-5 同步熱分析法 32 同步熱分析原理 32 TA Q600同步熱分析儀 33 TA Q600校正步驟 34 2-6 掃描式電子顯微鏡與能量散布X射線光譜 37 掃描式電子顯影原理 37 能量散佈X射線光譜原理 38 PhenomWorld Pro X桌上型電子顯微鏡 39 2-7 反應傳遞速度量測 41 反應傳遞速度測定方法 41 Vision Research Miro 310 Lab 高速攝影機 41 第3章 鋁/氧化銅奈米線熱劑製程開發 43 3-1 奈米熱劑合成步驟 43 3-2 氧化銅奈米線製備 45 銅線清洗 45 氧化銅奈米線生成:氧化溫度之影響 45 氧化銅奈米線生成:氧化時間之影響 51 氧化銅奈米線生成:爐內氣氛之影響 54 氧化銅奈米線生成:加熱基板熱傳導系數之影響 57 3-3 奈米鋁粉電泳沉積 61 奈米鋁懸浮液之配製 61 電泳沉積合成步驟 63 電泳電壓之影響 64 電泳時間之影響 66 3-4 奈米熱劑性質測定 67 奈米鋁粉填裝密度 67 奈米熱劑當量比 68 3-5 小結 70 第4章 奈米熱劑反應特性 74 4-1 絕熱反應溫度與產物 74 4-2 反應特性量測 79 反應溫度 79 熱釋放量 82 燃燒產物 85 熱流曲線修正 87 4-3 反應傳遞速度量測 89 電泳時間影響 89 電泳電壓影響 92 4-4 小結 95 第5章 結論與未來展望 96 5-1 結論 96 5-2 未來展望 100 參考文獻 101

    [1] S.H. Fischer and M.C. Grubelich, Theoretical energy release of thermites, intermetallic, and combustible metals, 24th International Pyrotechnics Seminar, Monterey, CA, USA, 1998.
    [2] R.A. Yetter, G.A. Risha, and S.F. Son (2009), Metal particle combustion and nanotechnology, Proceedings of the Combustion Institute 32, 1819-1838
    [3] S.F. Son, T.J. Foley, R.A. Yetter, M.H. Wu, and G.A. Risha (2007), Combustion of Nanoscale Al/MoO3 Thermite in Microchannels, Journal of Propulsion and Power 23(4), 715-721
    [4] E.L. Dreizin (2009), Metal-based reactive nanomaterials, Progress in Energy and Combustion Science 35, 141-167.
    [5] C. Rossi, D. Esteve (2005), Micropyrotechnics, a new technology for making energetic microsystems: review and prospective, Sensors and Actuators A 120, 297-310
    [6] A.S. Tappan, G.T. Long, A.M. Renlund and S.H. Kravitz (2003), Microenergetic materials – microscale energetic material processing and testing, AIAA Paper 2003-242
    [7] D.S. Stewart (2002), Towards the miniaturization of explosive technology, Shock Waves 11(6), 467-473.
    [8] K.T. Sullivan, M.A. Worsley, J.D. Kuntz, and A.E. Gash (2012), Electrophoretic deposition of binary energetic composites, Combustion and Flame 159, 2210-2218
    [9] K.T. Sullivan, J.D. Kuntz, and A.E. Gash (2012), Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites, Journal of Applied Physics 112, 024316
    [10] H. Wang, G. Jian, G.C. Egan, M.R. Zachariah (2014), Assembly and reactive properties of Al/CuO based nanothermite microparticles, Combustion and Flame 161, 2203-2208
    [11] H. Wang, J.B. DeLisio, G. Jian, W. Zhou, and M.R. Zachariah (2015), Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles, Combustion and Flame 162, 2823-2829
    [12] K. Zhang, C. Rossi, G.A.A. Rodriguez, C.Tenailleau, and P. Alphonse (2007), Development of a nano-Al/CuO based energetic material on silicon substrate, Applied Physics Letters 91, 113117
    [13] M. Petrantoni, C. Rossi, V. Conedera, D. Bourrier, P. Alphonse, and C.Tenailleau (2010), Synthesis process of nanowired Al/CuO thermite, Journal of Physics and Chemistry of Solids 71, 80-83
    [14] K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran (2008), A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr Microheater, Journal of Microelectromechanical Systems, 17(4), 832-836
    [15] V.K. Patel, and S. Bhattacharya (2013), High-Performance Nanothermite Composites Based on Aloe-Vera-Directed CuO Nanorods, ACS Applied Material and Interfaces 5, 13364-13374
    [16] S. Apperson, R.V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay, Z. Chen, K. Gangopadhyay, P. Redner, S. Nicholich, and D. Kapoor (2007), Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Applied Physics Letters 91, 243109
    [17] Y. Yang, P. Wang, Z. Zhang, H. Liu, J. Zhang, J. Zhuang, and X. Wang (2013), Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions, Scientific Reports 3, 1694
    [18] K.T. Sullivan and M. Zachariah (2010), Simultaneous pressure and optical measurements of nanoaluminum thermites: investigating the reaction mechanism, Journal of Propulsion and Power 26(3), 467-472
    [19] K.T. Sullivan, N.W. Piekiel, S. Chowdhury, C. Wu, M.R. Zachariah, and C.E. Johnson (2011), Ignition an combustion characteristics of nanoscale Al/AglO3: a potential energetic biocidal system, Combustion Science and Technology 183, 285-302
    [20] K.C. Walter, D.R. Pesiri and D.E. Wilson (2007), Manufacturing and performance of nanometric Al/MoO3 energetic materials, Journal of Propulsion and Power 23(4), 645-650
    [21] T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher Jr. and J.F. Poco (2001), Nanostructured energetic materials using sol-gel methodologies, Journal of Non-Crystalline Solids 285(1-3), 338-345.
    [22] S.H. Kim, and M.R. Zachariah (2004), Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly, Advanced Materials 16(20), 1821-1825
    [23] M. Schoenitz, T.S. Ward, and E.L. Dreizin (2005), Fully dense nano-composite energetic powders prepared by arrested reactive milling, Proceedings of the Combustion Institute 30, 2071-2078
    [24] A. Ermoline, D. Stamatis, E.L. Dreizin (2012), Low-temperature exothermic reactions in fully dense Al-CuO nanocomposite powders, Thermochimica Acta 527, 52-58
    [25] F. Séverac, P. Alphonse, A. Estève, A. Bancaud, and C. Rossi (2011), High-energy Al/CuO nanocomposites obtained by DNA-directed assembly, Advanced Functional Materials XX, 1-7
    [26] K.J. Blobauma, M.E. Reiss, J.M.P. Lawrence, and T.P. Weihs (2003), Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry, Journal of Applied Physics 94(5), 2915-2922
    [27] E.J. Mily, A. Oni, J.M. LeBeau, Y. Liua, H.J. Brown-Shaklee, J.F. Ihlefeld, and J.-P. Maria (2014), The role of terminal oxide structure and properties in nanothermite reactions, Thin Solid Films 562, 405-410
    [28] C.S. Staley, K.E. Raymond, R. Thiruvengadathan, S.J. Apperson, K. Gangopadhyay, S.M. Swaszek, R.J. Taylor, and S. Gangopadhyay (2013), Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters, Journal of Propulsion and Power 29(6), 1400-1409
    [29] M. Schoenitz, S. Umbrajkar, and E.L. Dreizin (2007), Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites, Journal of Propulsion and Power, 23(4), 683-687
    [30] R.J. Jacob, G. Jian, P.M. Guerieri, and M.R. Zachariah (2015), Energy release pathways in nanothermites follow through the condensed state, Combustion and Flame, 162, 258-264
    [31] G.C. Egan, M.R. Zachariah (2015), Commentary on the heat transfer mechanisms controlling propagation in nanothermites, Combustion and Flame, 162, 2959-2961
    [32] L. Glavier, G. Taton, J.M. Ducéré, V. Baijot, S. Pinon, T. Calais, A. Estève, M.D. Rouhani, and Carole Rossi (2015), Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combustion and Flame 162, 1813-1820
    [33] K. Lee, D. Kim, J. Shim, S. Bae , D.J. Shin, B.E. Treml, J. Yoo, T. Hanrathd, W.Dong Kim, and D.C. Lee (2015), Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off-stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change, Combustion and Flame 162, 3823-3828
    [34] R.A. Williams, M. Schoenitz, A. Ermoline, and E.L. Dreizin (2014), Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders, Thermochimica Acta 594, 1-10
    [35] M.J. O'Neil, The Merck index. An encyclopedia of chemicals and drugs, RSC Publishing.
    [36] B.J. McBride, M.J. Zehe, and S. Gordon (2002), Coefficients for Calculating Thermodynamic Properties of Individual Species, Sanford: NASA Glenn, NASA/TP-2002-211556
    [37] G. Filipic, and U. Cvelbar (2012), Copper oxide nanowires: a review of growth, Nanotechnology 23, 1-16
    [38] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang (2014), CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science 60, 208-337
    [39] K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J. Chane-Ching (2007), Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate, Nanotechnology 18, 275607
    [40] A. Kumar, A.K. Srivastava, P. Tiwari, and R.V. Nandedkar (2004), The effect of growth parameters on the aspect ratio and number density of CuO nanorods, Journal of Physics: Condensed Matter 16, 8531-8543
    [41] J.T. Chena, F. Zhang, J. Wanga, G.A. Zhang, B.B. Miaoa, X.Y. Fan, D. Yana, and P.X. Yan (2008), CuO nanowires synthesized by thermal oxidation route, Journal of Alloys and Compounds 454, 268-273
    [42] F. Wu, Y. Myung, and P. Banerjee (2014), Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth, The Royal Society of Chemistry 16, 3264-3267
    [43] X. Jiang, T. Herricks, and Y. Xia (2002), CuO nanowires can be synthesized byheating copper substrates in air, Nano Letters 2(12), 1333-1338
    [44] A.M.B. Gonçalves, L.C. Campos, A.S. Ferlauto, and R.G. Lacerda (2009), On the growth and electrical characterization of CuO nanowires by thermal oxidation, Journal of Applied Physics 106, 034303
    [45] L. Yuan, Y. Wang, R. Mema, G. Zhou (2011), Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals, Acta Materialia 59, 2491-2500
    [46] M.J. Sparnaay (1972), The electric double layer, vol. 4, 1st ed., Pergamon Press (Aust.) Pty. Ltd., Sydney
    [47] M. Matsumoto (1998), Electrocapillarity and double layer structure, Electrical phenomena at interfaces: fundamentals, measurements, and applications 76, 87-99
    [48] L. Besra and M. Liu (2007), A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52, 1-61
    [49] D.C. Henry (1931), The cataphoresis of suspended particles, Proc. R. Soc. London Ser. A 133, 106-129
    [50] M. Kaszuba, J. Corbett, F.M. Watson, and A. Jones (2010), High-concentration zeta potential measurements using light-scattering techniques, Philosophical Transactions of the Royal Society A 368, 4439-4451
    [51] E. Hückel (1924), The Cataphoresis of the Sphere, Phys. Z. 25(204)
    [52] M. Smoluchowski (1918), Mathematical theory of the kinetics of the coagulation of colloidal solutions, Z Phys. Chem. 92(129)
    [53] P.M. Biesheuvel and H. Verweij (1999), Theory of cast formation in electrophoretic deposition, Journal of the American Ceramic Society 82(6), 1451-1455
    [54] H.C. Hamaker (1940), Formation of a deposit by electrophoresis, Transactions of the Faraday Society 36, 279-287
    [55] A. I. Avgustinik, V. S. Vigdergauz, and G. I. Zhuravlev (1962), Electrophoretic deposition of ceramic masses from suspensions and calculation of deposit yields, J. Appl. Chem. USSR (Engl. Transl.) 35, 2090-2093
    [56] I. Corni, M.P. Ryan, and A.R. Boccaccini (2008), Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28, 1353-1367
    [57] Z. Zhang, Y. Huang, and Z. Jiang (1994), Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous Sol media, Journal of the American Ceramic Society 77(7), 1946-1949
    [58] B. Ferrari and R. Moreno (2010), EPD kinetics: A review, Journal of the European Ceramic Society 30, 1069-1078
    [59] O.O.V. Biest, and L.J. Vandeperre (1999), Electrophoretic deposition of materials, Annual Review of Materials Science 29, 327-352
    [60] P. Sarkar and P.S. Nicholson (1996), Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, Journal of the American Ceramic Society 79(8), 1987-2002
    [61] S. Gordon and B.J. McBride (1994), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication 1311, October

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE