| 研究生: |
劉怡彣 Liu, Yi-Wen |
|---|---|
| 論文名稱: |
發展針對困難梭狀芽孢桿菌感染之生物可分解性奈米疫苗 Development of a biodegradable nanoparticle based vaccine for Clostridium difficile infection |
| 指導教授: |
黃一修
Huang, I-Hsiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 困難梭狀芽孢桿菌 、毒素B 、奈米複合物 、疫苗 |
| 外文關鍵詞: | Clostridium difficile, toxin B, nanoparticles, vaccine |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
困難梭狀芽孢桿菌被認為是全世界醫療系統中感染性腹瀉的主要原因之一,其致病機制和所分泌的兩個外毒-毒素A及毒素B素有關。在本篇研究中,我們建構一個移除了毒素活性域的重組蛋白rTcdB作為疫苗的抗原候選,此抗原蛋白由毒素B的C端受體結合域(1852-2363殘基)所構成,包覆於聚谷氨酸/幾丁聚醣(γ-PGA / chitosan)奈米微粒中,此奈米微粒來自自然材質,具有生物可分解性、無毒性且能夠引發高程度的免疫反應,此外,聚谷氨酸/幾丁聚醣奈米微粒在近年來被報導能夠應用於口服疫苗載體,其可在腸道誘發強烈的黏膜免疫反應。我們比較了注射和口服接種兩種途徑,發現無論是注射還是口服皆可引發足夠的免疫反應,達到保護小鼠免於腹瀉及死亡的效果,此保護效果是來自疫苗所誘發的大量毒素中和抗體,並且由奈米顆粒所包覆的抗原能夠產生比佐以傳統佐劑氫氧化鋁者更加長效的抗體反應;這些結果證實了rTcdB具有高免疫原的特性,而聚谷氨酸/幾丁聚醣奈米微粒包覆蛋白質抗原確實能夠保護小鼠免於感染,顯示此形式的奈米微粒能夠作為安全且強效的疫苗佐劑。總結以上,此研究顯示預防性注射或口服接種包裹rTcdB的奈米微粒能夠提供足夠的保護,達到預防困難梭狀芽孢桿菌感染的效果。
Clostridium difficile is now considered to be one of the major causes of infectious diarrhea in healthcare systems worldwide. C. difficile infection is believed to be a toxin-mediated intestinal disease caused mainly by two large exotoxins, toxins A and B. In this study, we constructed a non-toxic recombinant protein, rTcdB, which consists of residues 1852-2363 of Toxin B receptor binding domain as a potential vaccine candidate. rTcdB was encased in nanoparticles (NPs) composed of γ-PGA and chitosan, which are made of natural materials, biodegradable, non-toxic and able to induce a high degree of immune response. Moreover, the NPs were recently reported as a mucosal adjuvant; it could induce a strong mucosal immunity in the gastrointestinal tract. We compared intraperitoneal injection and mucosal vaccination regimens and found that both methods provided mice full protection from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulating NPs elicited longer-lasting antibody responses than rTcdB with the conventional adjuvant, aluminum hydroxide. These results suggest that rTcdB is highly immunogenic when encapsulated by the safe and potent vaccine adjuvant NPs. In conclusion, this study demonstrates that prophylactic parenteral or oral vaccination with rTcdB-encapsulating NPs can provide protection from C. difficile infection.
Adams, S.D. and D.W. Mercer, Fulminant Clostridium difficile colitis. Curr Opin Crit Care, 2007. 13(4): p. 450-5.
Akagi, T., et al., In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid). Macromol Biosci, 2005. 5(7): p. 598-602.
Alasmari, F., et al., Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis, 2014. 59(2): p. 216-22.
Ashiuchi, M., et al., Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-gamma-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme. FEMS Microbiol Lett, 2003. 223(2): p. 221-5.
Babcock, G.J., et al., Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun, 2006. 74(11): p. 6339-47.
Ballard, S.T., J.H. Hunter, and A.E. Taylor, Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr, 1995. 15: p. 35-55.
Barua, S. and S. Mitragotri, Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano, 2013. 7(11): p. 9558-70.
Barua, S., et al., Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3270-5.
Bolton, R.P. and A.E. Read, Clostridium difficile in toxic megacolon complicating acute inflammatory bowel disease. Br Med J (Clin Res Ed), 1982. 285(6340): p. 475-6.
Borgmann, S., et al., Increased number of Clostridium difficile infections and prevalence of Clostridium difficile PCR ribotype 001 in southern Germany. Euro Surveill, 2008. 13(49).
Brazier, J.S., Clostridium difficile: from obscurity to superbug. Br J Biomed Sci, 2008. 65(1): p. 39-44.
Carter, G.P., et al., Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. 2015. 6(3): p. e00551.
Chaves-Olarte, E., et al., Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J Clin Invest, 1997. 100(7): p. 1734-41.
Chen, L., et al., The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 2011. 22(10): p. 105708.
Chen, M.C., et al., A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011. 32(36): p. 9826-38.
Chen, W., et al., Preparation and preliminary application of monoclonal antibodies to the receptor binding region of Clostridium difficile toxin B. Mol Med Rep, 2015. 12(5): p. 7712-20.
Conner, S.D. and S.L. Schmid, Regulated portals of entry into the cell. Nature, 2003. 422(6927): p. 37-44.
Curry, S.R., et al., tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol, 2007. 45(1): p. 215-21.
Dallal, R.M., et al., Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg, 2002. 235(3): p. 363-72.
De Magistris, M.T., Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev, 2006. 58(1): p. 52-67.
Debast, S.B., M.P. Bauer, and E.J. Kuijper, European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect, 2014. 20 Suppl 2: p. 1-26.
Deng, L., et al., A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur J Pharm Biopharm, 2015. 97(Pt A): p. 107-17.
Didierlaurent, A.M., et al., AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol, 2009. 183(10): p. 6186-97.
Eaimtrakarn, S., et al., Retention and transit of intestinal mucoadhesive films in rat small intestine. Int J Pharm, 2001. 224(1-2): p. 61-7.
Evans, D.F., et al., Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 1988. 29(8): p. 1035-41.
Eyre, D.W., et al., Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med, 2013. 369(13): p. 1195-205.
Farooq, P.D., et al., Pseudomembranous colitis. Dis Mon, 2015. 61(5): p. 181-206.
Feng, C., et al., Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf B Biointerfaces, 2015. 128: p. 439-47.
Feng, G., et al., Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One, 2013. 8(4): p. e61135.
Flach, T.L., et al., Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med, 2011. 17(4): p. 479-87.
Fonte, P., et al., Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv, 2015. 33(6 Pt 3): p. 1342-54.
Frey, S.M. and T.D. Wilkins, Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A. Infect Immun, 1992. 60(6): p. 2488-92.
Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine, 2012. 7: p. 5577-91.
Fromen, C.A., et al., Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A, 2015. 112(2): p. 488-93.
Gardiner, D.F., et al., A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine, 2009. 27(27): p. 3598-604.
Giannasca, P.J., et al., Serum antitoxin antibodies mediate systemic and mucosal protection from Clostridium difficile disease in hamsters. Infect Immun, 1999. 67(2): p. 527-38.
Giuliano, E.A., C.P. Moore, and T.E. Phillips, Morphological evidence of M cells in healthy canine conjunctiva-associated lymphoid tissue. Graefes Arch Clin Exp Ophthalmol, 2002. 240(3): p. 220-6.
Golding, B. and D.E. Scott, Vaccine strategies: targeting helper T cell responses. Ann N Y Acad Sci, 1995. 754: p. 126-37.
Goodman, T.T., P.L. Olive, and S.H. Pun, Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomedicine, 2007. 2(2): p. 265-74.
Goorhuis, A., et al., Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis, 2008. 47(9): p. 1162-70.
Gutierro, I., et al., Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine, 2002. 21(1-2): p. 67-77.
Harde, H., A.K. Agrawal, and S. Jain, Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine (Lond), 2014. 9(16): p. 2511-29.
Hensgens, M.P., et al., Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect, 2012. 18(7): p. 635-45.
Hung, Y.P., et al., Proton-Pump Inhibitor Exposure Aggravates Clostridium difficile-Associated Colitis: Evidence From a Mouse Model. J Infect Dis, 2015. 212(4): p. 654-63.
Illum, L., Chitosan and its use as a pharmaceutical excipient. Pharm Res, 1998. 15(9): p. 1326-31.
Janes, K.A., P. Calvo, and M.J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev, 2001. 47(1): p. 83-97.
Jank, T., T. Giesemann, and K. Aktories, Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology, 2007. 17(4): p. 15r-22r.
Kammona, O. and C. Kiparissides, Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release, 2012. 161(3): p. 781-94.
Kanchan, V. and A.K. Panda, Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials, 2007. 28(35): p. 5344-57.
Katare, Y.K., T. Muthukumaran, and A.K. Panda, Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm, 2005. 301(1-2): p. 149-60.
Kelly, C.P., et al., Anti-Clostridium difficile bovine immunoglobulin concentrate inhibits cytotoxicity and enterotoxicity of C. difficile toxins. Antimicrob Agents Chemother, 1996. 40(2): p. 373-9.
Kim, P.H., J.P. Iaconis, and R.D. Rolfe, Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun, 1987. 55(12): p. 2984-92.
Kink, J.A. and J.A. Williams, Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect Immun, 1998. 66(5): p. 2018-25.
Kotloff, K.L., et al., Safety and immunogenicity of increasing doses of a Clostridium difficile toxoid vaccine administered to healthy adults. Infect Immun, 2001. 69(2): p. 988-95.
Kotze, A.F., et al., Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release, 1998. 51(1): p. 35-46.
Kubota, N., et al., A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr Res, 2000. 324(4): p. 268-74.
Kuijper, E.J., B. Coignard, and P. Tull, Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect, 2006. 12 Suppl 6: p. 2-18.
Kuijper, E.J., et al., Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill, 2008. 13(31).
Kyne, L., et al., Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med, 2000. 342(6): p. 390-7.
Kyne, L., et al., Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet, 2001. 357(9251): p. 189-93.
Lai, P., et al., Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces, 2014. 118: p. 154-63.
Lai, S.K., et al., Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007. 28(18): p. 2876-84.
Leav, B.A., et al., Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine, 2010. 28(4): p. 965-9.
Leroux-Roels, G., Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine, 2010. 28 Suppl 3: p. C25-36.
Lim, S.K., et al., Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis, 2014. 58(12): p. 1723-30.
Lin, Y.H., et al., Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules, 2005. 6(2): p. 1104-12.
Lin, Y.H., et al., Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules, 2007. 8(1): p. 146-52.
Lindsay, J.A., T.C. Beaman, and P. Gerhardt, Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol, 1985. 163(2): p. 735-7.
Loo, V.G., et al., A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med, 2005. 353(23): p. 2442-9.
Ma, Z., H.H. Yeoh, and L.Y. Lim, Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci, 2002. 91(6): p. 1396-404.
Ma, Z., T.M. Lim, and L.Y. Lim, Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm, 2005. 293(1-2): p. 271-80.
Marrack, P., A.S. McKee, and M.W. Munks, Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol, 2009. 9(4): p. 287-93.
Maynard-Smith, M., et al., Recombinant antigens based on toxins A and B of Clostridium difficile that evoke a potent toxin-neutralising immune response. Vaccine, 2014. 32(6): p. 700-5.
McDonald, L.C., et al., An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med, 2005. 353(23): p. 2433-41.
McDonald, L.C., M. Owings, and D.B. Jernigan, Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg Infect Dis, 2006. 12(3): p. 409-15.
McEllistrem, M.C., et al., A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis, 2005. 40(2): p. 265-72.
Mishra, N., et al., Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers. Expert Opin Ther Pat, 2010. 20(5): p. 661-79.
Moon, H.J., et al., Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol, 2012. 160(3-4): p. 277-89.
Neutra, M.R. and P.A. Kozlowski, Mucosal vaccines: the promise and the challenge. Nat Rev Immunol, 2006. 6(2): p. 148-58.
Okamoto, S., et al., Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine, 2009. 27(42): p. 5896-905.
Pepin, J., et al., Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. Cmaj, 2004. 171(5): p. 466-72.
Poo, H., et al., New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid. Chem Biodivers, 2010. 7(6): p. 1555-62.
Postma, N., D. Kiers, and P. Pickkers, The challenge of Clostridium difficile infection: Overview of clinical manifestations, diagnostic tools and therapeutic options. Int J Antimicrob Agents, 2015.
Pothoulakis, C., Effects of Clostridium difficile toxins on epithelial cell barrier. Ann N Y Acad Sci, 2000. 915: p. 347-56.
Riggs, M.M., et al., Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis, 2007. 45(8): p. 992-8.
Rupnik, M., M.H. Wilcox, and D.N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol, 2009. 7(7): p. 526-36.
Sahoo, S.K., et al., Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release, 2002. 82(1): p. 105-14.
Schleh, C., et al., Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012. 6(1): p. 36-46.
See, I., et al., NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis, 2014. 58(10): p. 1394-400.
Shim, J.K., et al., Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet, 1998. 351(9103): p. 633-6.
Sougioultzis, S., et al., Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology, 2005. 128(3): p. 764-70.
Stabler, R.A., et al., Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol, 2009. 10(9): p. R102.
Studier, F.W. and B.A. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol, 1986. 189(1): p. 113-30.
Thelestam, M. and E. Chaves-Olarte, Cytotoxic effects of the Clostridium difficile toxins. Curr Top Microbiol Immunol, 2000. 250: p. 85-96.
Thouzeau, C., et al., Adjustments of gastric pH, motility and temperature during long-term preservation of stomach contents in free-ranging incubating king penguins. J Exp Biol, 2004. 207(Pt 15): p. 2715-24.
Tian, J.H., et al., A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine, 2012. 30(28): p. 4249-58.
Torres, J.F., et al., Evaluation of formalin-inactivated Clostridium difficile vaccines administered by parenteral and mucosal routes of immunization in hamsters. Infect Immun, 1995. 63(12): p. 4619-27.
Trombetta, E.S. and I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol, 2005. 23: p. 975-1028.
Uto, T., et al., Targeting of Antigen to Dendritic Cells with Poly( -Glutamic Acid) Nanoparticles Induces Antigen-Specific Humoral and Cellular Immunity. The Journal of Immunology, 2007. 178(5): p. 2979-2986.
van der Merwe, S.M., et al., Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm, 2004. 58(2): p. 225-35.
von Eichel-Streiber, C., et al., Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet, 1992. 233(1-2): p. 260-8.
Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev, 2005. 18(2): p. 247-63.
Ward, S.J., et al., Local and systemic neutralizing antibody responses induced by intranasal immunization with the nontoxic binding domain of toxin A from Clostridium difficile. Infect Immun, 1999. 67(10): p. 5124-32.
Warny, M., et al., Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet, 2005. 366(9491): p. 1079-84.
Wieczorkiewicz, J.T., et al., Fluoroquinolone and Macrolide Exposure Predict Clostridium difficile Infection (CDI) with the Highly Fluoroquinolone- and Macrolide-Resistant Epidemic C. difficile Strain, BI/NAP1/027. Antimicrob Agents Chemother, 2015.
Wong, C., et al., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A, 2011. 108(6): p. 2426-31.
Woodcock, D.M., et al., Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res, 1989. 17(9): p. 3469-78.
Wright, P.F., Inductive/effector mechanisms for humoral immunity at mucosal sites. Am J Reprod Immunol, 2011. 65(3): p. 248-52.
Xiang, S.D., et al., Pathogen recognition and development of particulate vaccines: does size matter? Methods, 2006. 40(1): p. 1-9.
Xiao, K., et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011. 32(13): p. 3435-46.
Yue, Z.G., et al., Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 2011. 12(7): p. 2440-6.
Zhao, K., et al., Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine, 2014. 9: p. 4609-19.
Zilberberg, M.D., A.F. Shorr, and M.H. Kollef, Increase in Clostridium difficile-related hospitalizations among infants in the United States, 2000-2005. Pediatr Infect Dis J, 2008. 27(12): p. 1111-3.
Zimlichman, E., et al., Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med, 2013. 173(22): p. 2039-46.
校內:2021-01-30公開