簡易檢索 / 詳目顯示

研究生: 駱易琳
Lo, I-lin
論文名稱: 壓印微影製程用聚醯亞胺塑膠模具製備及應用
Fabrication and application of polyimide plastic molds for imprinting lithography
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 143
中文關鍵詞: 聚亞醯胺奈米壓印
外文關鍵詞: Nanoimprint Lithography, Polyimide
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以開發適用於壓印之模具材料,為了因應不同需求分別作三種不同結構的聚亞醯胺模具。利用Pyromellitic dianhydride (PMDA), 4,4′-Oxydianiline (ODA)、4,4’-Hexafluoroisopropylidene diphthalic an- hydride(6-FDA)、2,2-bis(3-amino-4-hydroxylphenyl) hexafluoroproane (Bis-AP-AF)與 2,2-bis (4-aminophenyl) hexafluoropropane(Bis-AAF)等單體以聚縮合反應合成出三組不同結構之聚亞醯胺前驅物PAA,將其於300℃高溫環化後得到三組不同結構之聚亞醯胺聚合物。經由熱重量分析及熱機械分析顯示,實驗所得的三種聚亞醯胺能適用於壓印製程。聚亞醯胺模具經過不同的表面處理後,皆可應用於壓印製程並且順利脫模。其中導入大量含氟原子的聚亞醯胺模具,脫模性佳不需經過表面處理即可直接壓印。另外合成出無溶劑型熱聚合高分子作為阻劑材料,三種模具皆可壓印在阻劑上且成功的轉印出微米級圖案。

    Three different series of polyimide mold for nanoimprint were developed. Three kinds of polyimide precursors, poly(amic acid),were prepared from Pyromellitic dianhydride (PMDA), 4,4′-Oxydianiline (ODA), 4,4’- Hexafluoroisopropylidene diphthalic anhydride (6-FDA), 2,2-bis(3- amino-4- hydroxylphenyl)hexafluoroproane(Bis-AP-AF), and 2,2-bis (4-aminophenyl) hexafluoropropane(Bis-AAF). Subsequently, thermal cyclization of the poly(amic acid) precursors at 300 ℃ produced the correspondind polyimides. Polyimides, the glass transition temperatures and the thermal stabilities were examined by TMA and TGA, and the result demonstrated that would be suitable for the application of nanoimprint. Polyimide molds with different adhesive layers could used to imprint. Fluorinated polyimide molds were suitable for imprint because of their excellent mold-release characteristics. Solvent-free thermal initiated resist was prepared for imprint. The imprint result demonstrated that the ployimide molds and resist could be faithfully used for nanoimprint.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝………………………………………………………………....Ⅲ 總目錄…………………………………………………………………Ⅳ 圖目錄………………………………………………………………. Ⅷ 表目錄………………………………………………………………ⅩⅡ 第一章 緒論..............................................1 1-1 前言.................................................1 1-2 研究動機與目的.......................................5 1-3 研究架構.............................................6 第二章 文獻回顧及原理....................................7 2-1 聚亞醯胺之介紹.......................................7 2-1-1 加成型聚亞醯胺.....................................9 2-1-2 縮合型聚亞醯胺.....................................12 2-1-3 改質型聚亞醯胺.....................................17 2-2 壓印技術發展現況.....................................19 2-2-1 熱壓型奈米壓印技術(Hot embossing nanoimprint lithography) ...........................................20 2-2-2 紫外光硬化奈米壓印微影技術(UV-NIL) ..............25 2-2-3 軟微影技術(Soft Lithography) ....................29 2-2-4 混合型壓印技術(Hybrid Mold lithography) .........31 2-2-5 雷射輔助直接轉印技術(Laser-Assisted Direct Imprint, LADI) ..................................................35 2-3 壓印製程基本技術.....................................38 2-3-1 模仁製作...........................................38 2-3-2 離型層(抗沾黏)表面處理.............................46 2-4 蝕刻障礙層材料.......................................48 2-4-1 熱塑型(Thermoplastic)高分子阻劑..................48 2-4-2 感光型(photosensitive)高分子阻劑.................50 2-4-3 熱固型(thermosetting)高分子......................53 第三章 實驗方法與步驟....................................54 3-1 實驗藥品與儀器.......................................54 3-1-1 藥品...............................................54 3-1-2 實驗儀器...........................................55 3-2 二酸酐的純化.........................................56 3-3 聚亞醯胺前驅物之合成.................................56 3-3-1 PI-1 前驅物PAA-1( PMDA+ODA 系統)之合成.............56 3-3-2 PI-2 前驅物PAA-2( 6FDA+Bis-AP-AF 系統)之合成.......57 3-3-2 PI-2 前驅物PAA-3 ( 6FDA+Bis-AAF 系統)之合成........58 3-4 微奈米壓印模具製作...................................59 3-4-1 矽模仁清洗及前處理.................................59 3-4-2 PDMS 模仁製作......................................60 3-4-3 聚亞醯胺模仁製作...................................60 3-5 結構鑑定與分析.......................................64 3-5-1 聚醯胺酸固有黏度測定...............................64 3-5-2 傅立葉紅外線光譜儀分析(FT-IR)......................65 3-5-3 熱性質分析.........................................65 3-5-4 薄膜機械性質分析...................................66 3-5-5 穿透度測試(UV-Vis) ................................66 3-5-6 靜態接觸角量測.....................................67 3-6 無溶劑型熱聚合阻抗層高分子材料.......................68 3-6-1 阻劑製備...........................................68 3-6-2 凝膠滲透層析儀(GPC) ...............................69 3-7 壓印製程.............................................69 第四章 結果與討論........................................76 4-1 聚醯胺酸及聚亞醯胺之合成與分析.......................76 4-1-1 PMDA+ODA 系統......................................77 4-1-2 6FDA+Bis-AP-AF 系統................................78 4-1-3 6FDA+Bis-AAF 系統..................................79 4-2 聚亞醯胺熱性質分析...................................81 4-2-1 熱機械分析(TMA) ...................................81 4-2-2 熱重損失分析(TGA) .................................82 4-2-3 聚亞醯胺機械性質分析...............................83 4-2-4 穿透度測試(UV-Vis) ................................84 4-3 無溶劑型熱聚合阻劑...................................85 4-3-1 高分子阻劑製備.....................................87 4-3-2 壓印共聚合反應.....................................87 4-3-3 聚合材料性質測試...................................88 4-4 聚亞醯胺模仁在微奈壓印上之應用.......................89 4-4-1 PMDA+ODA 系統......................................90 4-4-2 6FDA+Bis-AP-AF 系統................................92 4-4-3 6FDA+Bis-AAF 系統..................................93 第五章 結論..............................................120 參考文獻.................................................121

    1. R. Jonckheere, Optical proximity correction: Mask pattern-generation challenges, Microelectron. Eng. , 30, 115, (1996)
    2. L.R. Harriott, Next generation lithography, Mater. Sci. Semicond. Process., 1, 93,(1998)
    3. S.Y. Chou, P.R. Krauss, and P.J. Renstrom :Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett., 67, 3114,(1995)
    4. S.Y. Chou, P.R. Krauss: Imprint Lithography with Sub-10 nm Feature Size and High Throughput, Microelectron. Eng., 35, 237,(1997)
    5. S. Zankovych, , T. Hoffmann, , J. Seekamp, , Nanoimprint
    lithography: Challenges and prospects, Nanotechnology , 12,
    91,(2001)
    6. Sotomayor Torresa, C.M., Zankovych, S., Seekamp, J., Nanoimprint lithography: An alternative nanofabrication approach, Mater. Sci. Eng., C , 23, 23,(2003)
    7. http://public.itrs.net/
    8. N. Yoda, H. J. Hiramoto, Macromol. Sci. Chem , 3 ,1641, (1984).
    9. H. F. Mark, N. M. Bikales, C. G. Overberder, G. Menges, In Encyclopedia of Polymer science and engineering, Dekker, M. New York , 364, (1987).
    10. M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc, 30,1135, (1908).
    11. 林金雀, 化工資訊月刊,13 , 58, (1908).
    12. 金進興, 工業材料 ,114 ,118, (1996).
    13. 馬振基, 塑膠資訊 ,12 ,14,(1997).
    14. H. D. Brit. Stenzenberger, Polym. J ,15, (1979)
    15. R. W. Lauver, J. Appl. Polym. Sci ,17 ,2529, (1979)
    16. J. V. Crivello, J. Polym. Sci ,11,1185, (1973)
    17. N. Bilow, A. L. Landis, L. J. Miller, U.S. Patent 3,845,018,(1974)
    18. R. A. Meyers, J. Polym. Sci.:Part A , 7 ,2757, (1969)
    19. M. K. Ghosh, K. L. Mitta, In Polyimides : Fundamentals and Applications, Dekker, M. New York, 7, (1996)
    20. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier, J. Polym. Sci.: Part A , 3 , 1373, (1965)
    21. M. K. Ghosh, K. L. Mittal, In Polyimides:Fundamentals and Applications, Dekker, M. New York, 15, (1996)
    22. Y. J. Kim, T. E. Glass, G. D. Lyle, J. E. McGrath, Macromolecules , 26,1344 , (1993)
    23. C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei, M. Kakimoto, High Perform. Polym , 12,205, (2000)
    24. V. Rami. Reddy, P. Sreenivasulu Reddy, J. Appl. Polym. Sci. , 58 ,1935, (1995)
    25. A. Kuznetsov, J. High Perform. Polym. , 12 ,445, (2000)
    26. K. Y. Choi, S. K. Choi, J. Polym. Sci.:Part A , 20 ,1107, (1982)
    27. M. Bruma, B. Schulz, T. Kopnick, Robinson, J. High Perform. Polym. , 12 ,429, (2000)
    28. M. Pasmanaban, M. Kakimoto, Y. Imai, J. Polym. Sci.:Part A , 28, 1569, (1990)
    29. Y. Yamada, High Perform. Polym. , 10, 92, (1998)
    30.http://www.technologyreview.com/articles/emerging0203.asp
    31. S.Y. Chou, Nanoimprint lithography, J. Vac. Sci. Technol., B, 14, 4129 (1996)
    32. H. Tan, A. Gilbertson, , S.Y. Chou, Roller nanoimprint lithography, J. Vac. Sci. Technol., B, 16, 3926(1998)
    33. S.Y. Chou, Z. Yu, S.J. Schablitsky, Nanoscale GaAs
    metal–semiconductor–metal photodetectors fabricated using
    nanoimprint lithography, Appl. Phys. Lett., 74, 2381(1999)
    34. J. Wang, S. Schablitsky, Z. Yu, S.Y. Chou, Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography, J. Vac. Sci. Technol., B, 17, 2957(1999)
    35. http://www.microresist.de/product.htm
    36. K. Pfeiffer, G. Bleidiessel, G. Gruetzner, H. Schulz, T. Hoffmann, H.C. Scheer, Suitability of new polymer materials with adjustable glass emperature for nano-imprinting, Microelectron. Eng. ,46, 431(1999)
    37. Heidari, I. Maximov, L. Montelius, Nanoimprint lithography at the 6 in. wafer scale, J. Vac. Sci. Technol., B 18, 3557(2000)
    38. T. Haatainen, J. Ahopelto, G. Gruetzner, M. Finck, K. Pfeiffer, Step and stamp imprint lithography using a commercial flip chip bonder, Proceedings of SPIE, 3997, 874(2000)
    39. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Flow Behaviour of Thin Polymer Films Used for Hot Embossing Lithography, Microelectron. Eng., 54, 229(2000)
    40. M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectron. Eng., 61-62, 441(2002)
    41. Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, M. Sasago, Study of the resist deformation in nanoimprint lithography, J. Vac. Sci. Technol., B, 19, 2811(2001)
    42. L.J. Guo, R. P. Krauss, S.Y. Chou, Nanoscale silicon field effect transistors fabricated using imprint lithography, Appl. Phys. Lett., 71, 1881(1997)
    43. Michael, S.Y. Chou, Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography, Appl. Phys. Lett., 81, 4431(2002)
    44. Y. Chen, D.S. Macintyre, E. Boyd, D. Moran, I. Thayne, S. Thoms, Study of electron forward scattering effects on the footwidth of T-gates fabricated using a bilayer of PMMA and UVIII, Microelectron. Eng., 53, 349(2000)
    45. W. Wu, J. Gu, H. Ge, S.Y. Chou, Room-temperature Si
    single-electron memory fabricated by nanoimprint lithography, Appl. Phys. Lett., 83, 2268(2003)
    46. S.Y.Chou, Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography, Appl. Phys. Lett., 81, 4431(2002)
    47. W. Zhang, S.Y. Chou, Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels, Appl. Phys. Lett., 83, 1632(2003)
    48. P.R. Krauss, S.Y. Chou, Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Appl. Phys. Lett., 71, 3174(1997)
    49. J. Moritz, S. Landis, J.C. Toussaint, R. Bayle-Guillemaud, Patterned media made from pre-etched wafers: A promising route towardultrahigh-density magnetic recording, IEEE Transactions on Magnetics, 38, 1731(2002)
    50. M.T. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou, Large area direct nanoimprinting of SiO2-TiO2 gel gratings for optical applications , J. Vac. Sci. Technol., B,21, 660(2003)
    51. Y. Gu, L. Igor, J. Kuskovsky, R. Fung, I.P. Robinson, Determination of size and composition of optically active CdZnSe/ZnBeSe quantum dots, Appl. Phys. Lett., 83, 3779(2003)
    52. Z. Yu, W. Wu, L. Chen, S.Y. Chou, Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications, J. Vac. Sci. Technol., B, 19, 2816(2001)
    53. Z. Yu, H. Gao, W. Wu, H. Ge, S.Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff, J. Vac. Sci. Technol., B,21, 2874(2003)
    54. V. Studer, A. Pépin, Y. Chen, Nanoembossing of thermoplastic polymers for microfluidic applications, Appl. Phys. Lett., 80, 3614 (2002)
    55. Pépin, P. Youinou, V. Studer, A. Lebib, Y. Chen, Nanoimprint lithography for the fabrication of DNA electrophoresis chips, Microelectron. Eng., 61-62, 927(2002)
    56. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz,
    Fabrication of nanostructures using a UV-based imprint technique, Microelectron. Eng., 53, 233(2000)
    57. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz,
    Characterization and application of a UV-based imprint technique, Microelectron. Eng., 57-58, 361(2001)
    58. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B.J. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning, Proceedings of SPIE, 3676, 379(1999)
    59. X. Liang, W. Zhang, M. Li, Q. Xia, W. Wu, H. Ge, X. Huang, S.Y. Chou, Electrostatic force-assisted nanoimprint lithography (EFAN), Nano Lett. , 5, 527(2005)
    60. D.J. Resnick, D. Mancini, W.J. Dauksher, Improved step and flash imprint lithography templates for nanofabrication, Microelectron. Eng., 69, 412(2003)
    61. J.Chappell, Electronic News - Electronic Business (2004)
    62. Y. Xia, G.M. Whitesides, Soft lithography, Chem. Int., 37, 550(1998)
    63. 74.D. Falconnet, G. Csucs, Surface engineering approaches to micropattern surfaces for cell-based assays Biomaterials, 27, 3044(2006)
    64. S.C. Lin, Simultaneous immobilization of protein microarrays by a micro stamper with back-filling reservoir, Sens. Actuators, B , 99, 174(2004)
    65. X. Cheng, M.H. Chang, L.J. Guo, Combined Nanoimprint–and-Photolithography Technique with a Hybrid Mold, Proceedings of SPIE - The International Society for Optical Engineering, 5374, 337(2004)
    66. X. Cheng, L.J. Guo, A combined-nanoimprint-and-photolithography patterning technique, Microelectron. Eng., 71, 277(2004)
    67. X. Cheng, L.J. Guo, One-step lithography for various size patterns with a hybrid mask-mold, Microelectron. Eng., 71, 288(2004)
    68. W.C. Liao, L.C. Hsu, High aspect ratio pattern transfer in imprint lithography using a hybrid mold, J. Vac. Sci. Technol., B, 22, 2764(2004)
    69. X. Cheng, L.J. Guo, A hybrid mask-mould lithography scheme and its application in nanoscale organic thin film transistors, Nanotechnology, 17, 927(2006)
    70. S.Y. Chou, C. Keimel, J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature, 417, 835(2002)
    71. S.Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint
    lithography, J. Vac. Sci. Technol., B, 14(6), 4129 (1996)
    72. K. Pfeiffer, M Fink, G Aherens, G Gruetzner, F Reuther, J Seekamp, S Zankovych, C M Sotomayor Torres, I Maximov, M Beck, M Grazcyk, L Montelius, H Schulz, H-C Scheer and F Steingrueber, Polymer stamps for nanoimprinting, Microelectron. Eng., 61-62 393 (2002)
    73. T. C. Bailey, B. J. Choi, M. E. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, High resolution templates for step and flash imprint lithography, J. Vac. Sci. Technol., B, 18, 3572 (2000)
    74. Vratzov, A. Fuchs, M. Lemme, W. Henschel, and H. Kurz, Large scale ultraviolet-based nanoimprint lithography, J. Vac. Sci. Technol., B, 21(6), (2003)
    75. T.C. Bailey, S.C. Johnson, D.J. Resnick, S.V. Sreenivasan, J.G. Ekerdt, C.G. Willson., Step and Flash Imprint Lithography: An Efficient Nanoscale Printing Technology, J. Photopolymer Sci. Tech., 15 (3), 481 (2002)
    76. J. Gierak, D. Mailly, G. Faini, J. L. Pelouard, P. Denk, F. Pardo, J. Y. Marzin, A. Septier, G. Schmid, J. Ferre, R. Hydman, C. Chappert, F. Flictein, B. Gayra, J-M Gerard, Nano-fabrication with focused ion beams, Microelectron. Eng., 57-58, 865 (2001)
    77. M.T. Li, J. Wang, L. Zhuang, S.Y. Chou, Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography, Appl. Phys. Lett. , 76, 673.(2000)
    78. K. Pfeiffer, M Fink, G. Aherens, G. Gruetzner, F. Reuther, J Seekamp, S Zankovych, C M Sotomayor Torres, I Maximov, M Beck, M Grazcyk, L Montelius, H Schulz, H-C Scheer, F Steingrueber, Polymer stamps for nanoimprinting, Microelectron. Eng., 61-62 393 (2002)
    79. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, G.M. Whitesides, Improved Pattern Transfer in Soft Lithography Using Composite Stamps,Langmuir, 18, 5314 (2002)
    80. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, Generating ~90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask, J. Vac. Sci. Technol., B, 26, 59.(1998)
    81. H. Tan, A. Gilbertson, S.Y. Chou, Roller nanoimprint lithography, J. Vac. Sci. Technol., B, 16, 3926.(1999)
    82. Delamarche, H. Schmid, H.A. Biebuyck, B. Michel, Stability of molded polydimethylsiloxane microstructures, Advanced Materials 9(9), 741. (1997)
    83. K. M. Choi and J. A. Rogers, A Photocurable Poly(dimethylsiloxane) Chemistry Designed for SoftLithographic Molding and Printing in the Nanometer Regime, J. AM. CHEM. SOC. 125(14), 4060 (2003)
    84. T. C. Bailey, B.J. Smith, B. J. Choi, M. E. Colburn, M. Meissl, S.V. Sreenivasan, J.G. Ekerdt and C.G. Willson., Step and Flash Imprint lithography: Defect Analysis, J. Vac. Sci. Technol., B, 19(6), 2806 (2001)
    85. Neil S. Cameron1, Arnaud Ott1, Hélène Roberge1, Teodor Veres1, Hot Embossing Lithography Release Layer Characterization by Chemical Force Microscopy, Mater. Res. Soc. Symp. Proc. 872 , J11.3 (2005)
    86. H. Schulz, H.-C. Scheer, T. Hoffmann, New polymer materials for nanoimprinting, J. Vac. Sci. Technol., B, 18, 1861(2000)
    87.http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf
    88. http://www.microresist.de/thermoplastics_2005_en.htm
    89. M. Colburm, G. Annette, A. Marie, Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process, J. Vac. Sci. Technol., B, 19(6), 2162(2001)
    90. http://www.microresist.de/mr_nil6000_en.htm
    91. http://www.toyogosei.net/research.html
    92. http://www.microresist.de/mri9000e_2005_en.htm
    93. M. Sagnes, L. Malaquin, F. Carcenac, C. Vieu, C. Fournier,Imprint lithography using thermo-polymerisation of MMA, Microelectron. Eng., 61– 62, 429. (2002)
    94. B.W. Bender, Dispersion of microgel in impact polystyrene, J. Appl. Polym. Sci., 9, 2887. (1965)
    95. B.W. Bender, Interaction of polymerization conditions, structural variables, and mechanical properties of rubber-modified plastics produced from bulk polymerized styrene/poly (butadiene-co- styrene),
    J. Appl. Polym. Sci., 27, 1395. (1982)
    96. M. Fischer, G.P. Hellmann, On the Evolution of Phase Patterns during the High-Impact-Modified Polystyrene Process, Macromolecules, 29, 2498.(1996)
    97. D.A, Marc, A. Penlidis, A systematic approach to the study of multicomponent polymerization kinetics-the butyl acrylate/methyl methacrylate/viny acetate example: 1 Bulk copolymerization, Polymer, 3, 587. (1995)

    無法下載圖示 校內:2107-07-02公開
    校外:2107-07-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE