| 研究生: |
陳柏達 Chen, Po-Ta |
|---|---|
| 論文名稱: |
海水蒸發過程中硼同位素和其他元素的變化研究 Study of Boron Isotopes and Other Elemental Variations during Seawater Evaporation Processes |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 硼同位素 、岩鹽 、蒸發 |
| 外文關鍵詞: | boron isotopes, halite, evaporite |
| 相關次數: | 點閱:48 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼在自然界存在 10B 和 11B 兩種天然穩定同位素,兩者的豐度分別是 19.9 % 和 80.1 %,兩個穩定同位素之間相對大的質量差異,會導致自然界中存在顯著的硼同位素分化。由於硼在天然中的兩種穩定同位素之間的相對質量差和組成變化大,因此可作為良好的古環境示蹤劑。蒸發岩和滷水的硼同位素組成也已被廣泛用於追踪古鹽度以及區分和表徵海洋和非海洋沉積環境。
在春季(3 月)和夏季(5 月)於四草安順鹽場採集各個蒸發池中逐步濃縮的滷水及 鹽樣品,以感應耦合電漿光學發射光譜儀、離子層析儀分析其元素組成,並以微昇華純化分離樣品的硼,使用多接收器感應耦合電漿質譜儀進行同位素分析。結果顯示岩鹽中流體液包體對岩鹽的微量元素濃度有顯著的影響,對硼同位素的影響不顯著,然而在蒸發過程中液體表面的岩鹽結晶,俗稱鹽花,對於硼同位素的影響。
根據研究結果,顯示流體液包體對岩鹽的元素濃度有可見的影響,流體液包體含量越多,就能給予岩鹽越多滷水原液中富含的各種微量元素。且本研究認為結晶池滷水表層結晶的鹽花形成了一層鹽殼,導致太陽的輻射熱沒有良好的傳遞到底部的滷水,熱集中在這層鹽殼上,使表面有著最強烈的蒸發作用,讓鹽花樣品擁有比較重的 δ11B 值。
Boron exists in nature as two stable isotopes, 10B and 11B, with abundances of 19.9 % and 80.1 %, respectively. The significant mass difference between the two stable isotopes leads to notable isotopic fractionation in nature. The relative mass difference and compositional variation range of the two stable boron isotopes in natural systems make them excellent tracers for paleoenvironmental studies. The isotopic compositions of boron in evaporite and brines have been widely used to track paleosalinity and to differentiate and characterize marine and non-marine sedimentary environments.
In this study, brine and salt samples were collected from progressively concentrated ponds in the Sicao Anshun Salt Field in both spring (March) and summer (May). The elemental compositions of the samples were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES) and ion chromatography (IC), and the boron in the samples was purified by micro-sublimation and analyzed by multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The results show that fluid inclusions have a significant influence on the trace element concentrations in salt, but the effect on the boron isotopes is not significant. However, the salt crystals on the surface of the brine during the evaporation process, known as salt flor de sal, have a strong influence on the boron isotopes.
According to obtained results, it is evident that the fluid inclusion has a visible impact on the element concentration of halite. The higher the content of fluid inclusion, the more trace elements rich in the brine solution can be provided to halite. Moreover, this study suggests that the formation of a salt crust in the form of halite crystals on the surface of brine in the crystallization pond causes the solar radiation heat to be poorly transmitted to the bottom brine. The heat is concentrated on this salt crust, resulting in the strongest evaporation on the surface, and making the halite samples have relatively heavy δ11B values.
林裕森 (2017). 歐陸傳奇食材:巴薩米克醋、貝隆生蠔、布烈斯雞、鹽之花、伊比利生火腿、帕馬森乾酪、藍黴乳酪、黑松露、白松露.臺灣:積木文化.
Adamski, J. C., Roberts, J. A. & Goldstein, R. H. (2006) Entrapment of bacteria in fluid inclusions in laboratory-grown halite. Astrobiology, 6, 552-62.
Babel, M., & Schreiber, B. C. (2014) Geochemistry of evaporites and evolution of seawater. Treatise on geochemistry, 483-560.
Balarew, C. (1993) Solubilities in seawater-type systems: Some technical and environmental friendly applications. Pure and Applied Chemistry, 65, No. 2, 213-218.
Bardavid, R. E., Khristo, P. & Oren, A. (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles, 12, 5-14.
Chan, L., Starinsky, A. & Katz, A. (2002). The behavior of lithium and its isotopes in oilfield brines: evidence from the Heletz-Kokhav field, Israel. Geochimica et Cosmochimica Acta, 66(4), 615-623.
Davis, J.S. (1973) Importance of microorganisms in solar salt production. Proceedings ofthe Fourth International Symposium on Salt (Houston, Texas), 369-372.
Donadio, C., Bialecki, A., Valla, A. & Dufoss´e, L. (2011) Carotenoid-derived aroma compounds detected and identified in brines and speciality sea salts (fleur de sel) produced in solar salterns from Saint-Armel (France). Journal of Food Composition and Analysis, 24(6), 801-810.
Dufoss´e, L., Donadio, C., Valla, A., Meile, J. C. & Montet, D. (2013) Determination of speciality food salt origin by using 16S rDNA fingerprinting of bacterial communities by PCR-DGGE: An application on marine salts produced in solar salterns from the French Atlantic Ocean. Food Control, 32(2), 644-649.
Du, Y., Fan, Q., Gao, D., Wei, H., Shan, F., Li, B., Zhang, X., Yuan, Q., Qin, Z., Ren, Q. & Teng, X. (2019) Evaluation of boron isotopes in halite as an indicator of the salinity of Qarhan paleolake water in the eastern Qaidam Basin, western China. Geoscience Frontiers, 10, 253-262.
Eugster, H.P., Hardie, L.A. (1978). Saline lakes. In: Lerman. A. (Ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, 237-293.
Fan, Q., Ma, Y., Cheng, H., Wei, H., Yuan, Q., Qin, Z. & Shan, F. (2015) Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sediment. Geol, 322, 34–42.
Franson, M.A. (1975). Standard methods for the examination of water and waste water 14ed. NewYork: APHA-AWA-WPCF.
Fontana, P., Pettit, D. & Cristoforetti, S. (2015). Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity. Journal of Crystal Growth, 42, 80-85.
Fontana, P., Schefer, J. & Pettit, D. (2011) Characterization of sodium chloride crystals grown in microgravity. Journal of Crystal Growth, 324, 207-211.
Garrett, D. E. (1970) The chemistry and origin of potash deposits. In: Rau JL and Dellwig LF (eds.) 3rd Symposium on Salt, Cleveland, April 21–24, 1969, vol. 1, 211–222.
Gavin, L. F., Christophe, L. & Horst, R. M. (2016) Encyclopedia of Geochemistry. Berlin: Springer Netherlands, 1-6
Goldstein, R. H., Reynolds, T. J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. In: SEMP (Society of Sedimentary Geology) Short Course. vol. 3. pp. 199.
Hardie, L. A., Eugster, H. P. (1980) Evaporation of Seawater: Calculated Mineral Sequences. Science, 208(4443), 498–500.
Horita, J., Zimmermann, H. & Holland, H. D. (2002) Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733–3756.
Hussain, S. A., Han, F. Q., Ma, Z., Hussain, A., Mughal, M. S., Han, J., Alhassan, A., & Widory, D. (2021) Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan. Minerals, 11, 161.
Kasedde, M., Lwanyaga, B. S. & Kirabira, J. B. (2014) Optimization of solar energy for salt extraction from Lake Katwe, Uganda. Global NEST Journal, 16(6), 1152-1168.
Krumgalz, B. S., Magdal, E. & Starinsky, A. (2002) The evolution of a chloride sedimentary sequence-simulated evaporation of the Dead Sea. Israel Journal of Earth Sciences, 51, 253-267.
Li, M., Fang, X., Yi, C., Gao, S., Zhang, W. & Galy, A. (2010) Evaporite minerals and geochemistry of the upper 400 m sediments in a core from the Western Qaidam Basin, Tibet. Quaternary International, 218, 176-189.
Liu, W. G., Xiao, Y. K., Peng, Z. C., An, Z. S. & He, X. X. (2000) Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin. Geochim. Cosmochim. Acta, 64, 2177–2183.
Litchfield, C. D., Oren, A., Irby, A., Sikaroodi, M. & Gillevet, P.M. (2009) Temporal and salinity impacts on the microbial diversity at the Eilat, Israel, solar salt plant. Global NEST Journal, 11(1), 86-90.
Marschall, H. & Jiang, S. Y. (2011) Tourmaline isotopes: No element left behind. Element,7, 313–319.
Meng, F. W., Galamay, A. R., Ni P., Yang, C. H., Li, Y. P. & Zhuo, Q. G. (2014) The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85, 97-105.
Nie, Z., Bu, L., Zheng, M. & Huang, W. (2011) Experimental study of natural brine solar ponds in Tibet. Solar Energy, 85, 1537-1542.
Nurcahyani, D. R. & Agus, T. (2021) Parameter Lingkungan, Kadar Air, dan NaCl Bunga Garam Fleur De Sel. Jurnal Pangan dan Agroindustri, vol. 9, no. 1, 25-34.
Qin, J. Z., Zhang, R. X., Peng, K. Z., Li, K. Q., Ma, Q. Y., Fan, S. Q., Du, S. Y., Wang, P. J. & Shan, S. F., (2018) Extraction and Separation of Boron in Anhydrite and Gypsum Minerals and Its Isotopic Measurement by Thermal Ionization Mass Spectrometry. Chinese Journal of Analytical Chemistry, 12, 48-54.
Qin, J., Li, Q., Zhang, X., Fan, Q., Wang, J., Du, Y., Ma, Y., Wei, H., Qin, Y., & Shan, F., (2019) Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geology Reviews, vol.116.
Ortı´, F., Pueyo, J. J. Geisler-Cussey, D. & Dulau, N. (1984) Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain). Revista d’Investigacions Geologiques, 38-39, 169-220.
Ortı´, F., Pueyo, J. J. & Truc, G. (1984) Las salinasmaritimas de Santa Pola (Alicante, Espan˜a). Breve introduccio´n al studio de un medio natural controlado de sedimentacio´n evaporitica somera. Revista d’Investigacions Geologiques, 38-39, 9-29.
Paris, G., Gaillardet, J. & Louvat, P. (2010) Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology, 38, 1036.
Quilaqueo, M.; Duizer, L. & Aguilera, J.M. (2015) The morphology of salt crystals affects the perception of saltiness. Food Research International, 76(3), 675-681.
Rama, R., Chiu, N., Carvalho Da Silva, M., Hewson, L., Hort, J. and Fisk, I.D. (2013) Impact of salt crystal size on in-mouth delivery of sodium and saltiness perception from snack foods. Journal of Texture Studies, 44(5), 338-345.
Roedder, E. & Belkin, H.E. (1979) Fluid inclusions in salt from the rayburn and vacherie domes, Louisiana. U. S. Geological survey open file report.
Sainz-L´opez, N., Boski, T. & Sampath, D. M. R. (2019) Fleur de Sel Composition and
Production: Analysis and Numerical Simulation in an Artisanal Saltern. Journal of Coastal Research, 35, No. 6.
Sun, D., Xiao, Y., Wang, Y. & Qi, H. (1993) A Preliminary Investigation on Boron Isotopic Geochemistry of the Qinghai lake, China. Chinese Science Bulletin, 38(19), 1641-1645.
Shumilin, E., Grajeda-Muñoz, M., Silverberg, N. & California, B. (2002) Observations on trace element hypersaline geochemistry in surficial deposits of evaporation ponds of
Exportadora de Sal, Guerrero Negro, Baja California Sur, Mexico. Marine Chemistry, 79, 133-153.
Tabor, H. (1980) Non-convecting solar ponds. Philos. Trans. R. Soc. A, 295, 423–433. Timofeeff, M.N., Lowenstein, T.K. & Blackburn, W. H. (2000) ESEM-EDS: an improved technique for major element chemical analysis of fluid inclusions. Chem. Geol. 164, 171–182.
Wahed, M. S. M. A.., Mohamed, E. A., El-Sayed, M. I., M'nif, A. & Sillanpää, M. (2015) Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4–H2O. Desalination, 355, 11-21.
Wang, B. S., You, C. F., Huang, K. F., Wu, S. F., Aggarwal, S. K., Chung, C. H. & Lin, P.Y. (2010) Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta, 82, 1398-1384.
Wang, J. & Lowenstein, T. K. (2017). Anomalously High Cretaceous Paleobrine Temperatures: Hothouse, Hydrothermal or Solar Heating?. Minerals, 7, 245.
Williams, L. B. & Hervig, R. L. (2004) Boron isotope composition of coals: a potential tracer of organic contaminated fluids. Applied Geochemistry, 19(10), 1625-1636
Xiao, J., Xiao, Y.K., Jin, Z. D., He, M. Y. & Liu, C. Q. (2013) Boron isotope variations and its geochemical application in nature. Aust. J. Earth Sci, 60, 431–447.
Xiao, Y. K., Li, S. Z., Wei, H. Z., Sun, A. D., Liu, W. G., Zhou, W. J., Zhao, Z. Q., Liu, C. Q. & Swihart, G. H. (2007) Boron isotopic fractionation during seawater evaporation. Marine Chemistry, 103, 382-392. Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A. R. & Raab, M. (1992) Boron isotope
variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate. GEOLOGY, 20, 799-802.
Zhang, X., Ma, H., Ma, Y., Tang, Q. & Yuan, X. (2013) Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates. J. Asian Earth Sci, 62, 812–818.
Zhang, X., Lin, C., Guo, B., Cao, Y., Lei, Y., Zhou, X. & Renqin, D. (2018) Distribution and geochemical processes of boron in the multimedia of Lake Qinghai, China. Journal Great Lakes Research, 44(5), 1035-1042.
Zhao, Y., Wei, H. Z., Liu, X., Wang, Y. J., Jiang, S. Y., Eastoe, C. J. & Peryt, T.M. (2021) Isotope evidence for multiple sources of B and Cl in Middle Miocene. Applied Geochemistry, 124, 104819.
Zimmermann, H. (2000) Tertiary seawater chemistry; implications from primary fluid inclusions in marine halite. American Journal of Science, vol. 300, 723.