| 研究生: |
張翰林 Chang, Han-Lin |
|---|---|
| 論文名稱: |
電解沉積鍶置換氫氧基磷灰石於鈦基板之研究 The Study of Strontium-Substituted Hydroxyapatite Coating on Titanium by Electrolytic Deposition |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 共同指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氫氧基磷灰石 、電解沉積 、熱處理 、鍶 、鈦 |
| 外文關鍵詞: | Hydroxyapatite, Electrolytic deposition, Heat treatment, Strontium, Titanium |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氧基磷灰石(Hydroxyapatite, HA)為廣泛使用的生物活性材料,其所含的化學元素亦可由其它離子所取代以促進不同功能。而鍶離子的置換近年來被廣泛研究,由於鍶具有鈣不可取代的特性,且有助於骨整合及防止骨吸收。電解沉積為施加一電場,使解離後離子析出於基材表面的低成本且一步法製成。本篇研究以電解沉積法,將含鍶、鈣及磷等離子之電解液沉積於鈦基材上,形成鍶、鈣及磷化合物鍍層。
本研究主要分為三部分,分別為電解參數對鍍層的探討、鍍層材料性質分析及鍍層體外試驗分析等。電解參數結果顯示,反應溫度主要影響鍍層結晶性;電流密度大小影響鍍層均勻性;而反應時間則影響鍍層厚度。
當選定適當電解參數時,可沉積表面、厚度均勻且高結晶、高純度之鍍層。經SEM高倍觀察表面特徵,發現鍶的添加可使鍍層結構緻密化,且由原本的片狀結構轉變為針狀結構。經能量散佈光譜儀(EDS)及感應偶和電漿放射光譜儀ICP-AES亦確實發現鍶的存在,且鍍層鍶含量與電解液之鍶濃度明顯呈正比關係,其鍶離子置換率達94.5%,鍶、鈣與磷的比例亦維持1.66-1.69之間。X光繞射儀(XRD)分析相組成除鈦基材外另含有高純度鍶置換氫氧基磷灰石(Strontium substituted hydroxyapatite, Sr-HA)且隨鍶濃度提升亦增加其結晶度;經熱處理後之鍍層除基材氧化外亦無其它雜相。以上實驗均證實不同鍶濃度確實存於鍍層中,且取代鈣離子形成高純度、高結晶相之鍶置換氫氧基磷灰石。而大氣熱處理之燒結不僅可提升鍍層之結晶性亦能加強其與基材之附著力約兩倍。
經由體外試驗之浸泡模擬體液結果可知,鍍層可誘發體液中Ca32+及PO43-析出apatite結構,而經過熱處理之試片,則會降低鍶離子的釋出。由
MC3T3-E1細胞初期固定結果顯示於3小時,含鍶且熱處理之鍍層細胞已完全攤平;而未添加鍶含量均無此現象;而由免疫螢光染色亦證實含鍶且熱處理之鍍層,不僅能加速細胞初期的貼附﹐更能提升細胞初期的增生能力。顯示經過熱處理之Sr-HA其生物活性>未經熱處理之Sr-HA>HA。
本實驗成功利用電解沉積法製備低濃度之鍶置換氫氧基磷灰石,其塗佈、厚度均勻,且晶質無雜項,透過熱處理燒結後亦能提升原本Sr-HA之生物活性,期望可應用於未來人工牙根製作及改植上。
Hydroxyapatite (HA) is widely used as bioactive coating material and easily incorporated a variety of substituents in the apatite structure. The substitution of strontium (Sr) ions has been widely researched in recent years. Because strontium has irreplaceable characteristics , and promotes osseointegration and reduces bone resorption. The electrolytic deposition technique is a simple, easy controlled, low cost and one-step process method. The application of an electric field can deposit inorganic irons on the conductive substrate surface. In this study, the strontium-substituted hydroxyapatite (Sr-HA) is electrochemically deposited onto the titanium (Ti) substrate using a modulated electrical potential and electrolyte composition.
It is divided into three parts in this study, the investigation of electrolytic deposition parameters, the coating analysis of material properties , and the coating analysis of the in vitro test, respectively. In part one, it shows that the reaction temperature and the phase of coating are related ; the current density and the uniform of coating are related ; also the reaction time and the thickness of coating are related.
In part two, it indicates that suitable parameters in part one can deposite at various strontium concentration coatings with uniform, high crystallization and purity.The SEM results indicated that the flat structure of coating was transferred to needle-like and dense structure with raising strontium content. Notably, the corresponding strontium signal was detected by the EDS and ICP-AES. The rate of Sr substitution was 94.5% and the rate of (Ca+Sr)/P was between 1.6 and 1.69. The XRD analysis indicated that the phase of coating was Sr-HA and Ti. These results confirmed that strontium, calcium and phosphate were coated onto the titanium surface and major composed by Sr-HA. After heat treatment at 700oC for one hour, the crystallization of HA increased. Scratch test showed that the critical load is two times greater than one without heat treatment.
The immersion test showed that the coating can absorb Ca32+ and PO43- to form an apatite onto surface. However, the coating could restrain the release of Sr after heat treatment. The immunofluorescence test and cell observation showed that the initial unmbers and adherence in MC3T3-E1 cells with heat treatment are greater than ones without heat treatment , and they become better with the gain of Sr concentration.
In this study, it can produce the various concentration of Sr-HA coatings onto the Ti substrate with high crystallization and purity using the electrolytic deposition method. After heat treatment, it can enhance the bioactive and the strength of interface.
Therefore, it is expected to be applied to manufacture and modification of dental implant in the future.
[1] M. Niinomi, “Recent research and development in titanium alloys for biomedical applications and healthcare goods”, Science and Technology of Advanced Materials, 4, 445-454, 2003.
[2] V. M. Wells, T. C. Hearn, K. A. McCaul, S. M. Anderton, A. E. R. Wigg and S. E. Graves, “Changing incidence of primary total hip arthroplasty and total knee arthroplasty for primary osteoarthritis”, The Journal of Arthroplasty, 17, 267-273, 2002.
[3] “Dental implants and prosthetics market continues growth”, Ceramic Industry, 2012.
[4] 葉哲政,“生醫用金屬產業全球布局與競爭策略”,ITIS 經濟部產業報告,2006。
[5] A. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review”, Clinical Oral Implants Research, 20, 172-184, 2009.
[6] Y. Han, S. H. Hong and K. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation”, Surface and Coatings Technology, 168, 249-258, 2003.
[7] J. W. McCutchen, J. P. Collier, and M. B. Mayer, “Osseointegration of Titanium Implants in Total Hip Arthroplasty”, Clinical Orthopaedics and Related Research, 261, 114-125, 1990.
[8] L. Sennerby, P. Thomsen and L. E. Ericson, “Ultrastructure of the bone-titanium interface in rabbits”, Journal of Materials Science: Materials in Medicine, 3, 262-271, 1992.
[9] A. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review”, Clinical Oral Implants Research, 20, 172-184, 2009.
[10] K. Søballe, S. Overgaard, E. S. Hansen, H. Brokstedt, M. Lind and C. Bünger, “A review of ceramic coatings for implant fixation”, Journal of long-term effects of medical implants, 9, 1999, 131-151.
[11] B. Matej, K. Januz, J. Mark and A. Waqar, “Review: titanium and titanium alloy applications in medicine”, International journal of nano and biomaterials, 1, 2008, 3-34.
[12] M. Manso, S. Ogueta, P. Herrero-Fernández, L. Vázquez, M. Langlet and J. P. García-Ruiz, “Biological evaluation of aerosol-gel-derived hydroxyapatite coatings with human mesenchymal stem cells”, Biomaterials, 23, 3985-3990, 2002.
[13] H. W. Kim, Y. H. Koh, L. H. Li, S. Lee and H. E. Kim, “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method”, Biomaterials, 25, 2533-2538, 2004.
[14] C. F. Feng, K. A. Khor, E. J. Liu and P. Cheang, “Phase transformations in plasma sprayed hydroxyapatite coatings”, Scripta Materialia, 42, 103-109, 2000.
[15] E. Chang, W. J. Chang, B. C. Wang and C. Y. Yang, “Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part I Phase, microstructure and bonding strength”, Journal of Materials Science: Materials in Medicine, 8, 193-200, 1997.
[16] S. W. K. Kweh, K. A. Khor and P. Cheang, “An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock”, Biomaterials, 23, 775-785, 2002.
[17] O. Blind, L. H. Klein, B. Dailey and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates”, Dental Materials, 21, 1017-1024, 2005.
[18] Y. Yang, K. H. Kim and J. L. Ong, “A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying”, Biomaterials, 26, 327-337, 2005.
[19] O. Suzuki, “Octacalcium phosphate: Osteoconductivity and crystal chemistry”, Acta Biomaterialia, 6, 2010, 3379-3387.
[20] L. L. Hench and J. Wilson, “An introduction to biomaterials”, 1993, 139-198.
[21] A. Ito, K. Ojima, H. Naito, N. Ichinose and T. Tateishi, “Preparation, solubility, and cytocompatibility od zinc-releasing calcium phosphate ceramics”, Journal of Biomedical Materials Research, 50, 2000, 178-183
[22] M. J. Jiao and X. X. Wang, “Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate”, Materials Letters, 63, 2009, 2286-2289.
[23] W. Admassu and T. Breese, “Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals”, Journal of hazardous materials, 69, 1999, 187-196.
[24] Q. Y. Ma, S. J. Traina, T. J. Logan and J. A. Ryan, “Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Hydroxyapatite”, Environmental science and technology, 28, 1994, 1219-1228.
[25] N. Hijón, M. V. Cabañas, J. Peña, M. Vallet-Regí, “Dip coated silicon-substituted hydroxyapatite films”, Acta Biomaterialia, 5, 2006, 567-574.
[26] E. Bonnelye, A. Chabadel, F. Saltela and P. Jurdic, “Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro”, Bone, 42, 2008, 129-138.
[27] C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I. N. Mihailescu and A. Bigi, “Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response”, Acta Biomaterialia, 4, 2008, 1885-1893.
[28] W. Xue, J. L. Moore, H. L. Hosick, S. Bose, A. Bandyopadhyay, W. W. Lu, K. M. Cheung and K. D. Luk, “Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics”, Journal of Biomedical Materials Research Part A, 4, 2006, 804-814.
[29] W. Xue, H. L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K. D. K Luk, K. M. C. Cheung and W. W. Lu, “Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating”, Surface and Coatings Technology, 201, 2007, 4685-4693.
[30] C. T. Wong, Q. Z. Chen, W. W. Lu, J. C. Y. Leong, W. K. Chan, K. M. C. Cheung and K. D. K. Luk, “Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo”, Journal of Biomedical Materials Research Part A, 70, 2004, 428-435.
[31] G. X. Ni, K. Y. Chiu, W. W. Lu, Y. Wang, Y. G. Zhang, L. B. Hao, Z. Y. Li, W. M. Lam, S. B. Lu and K. D. Luk, “Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty”, Biomaterials, 27, 2006, 4348-4355.
[32] P. J. Marie and M. Hott, “Short-term effects of fluoride and strontium on bone formation and resorption in the mouse”, Metabolism, 35, 1986, 547-551.
[33] Y. Li, Q. Li, S. Zhu, E. Luo, J. Li, G. Feng, Y. Liao and J. Hu, “The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats”, Biomaterials, 31, 2010, 9006-9014.
[34] R. A. Bentley, “Strontium isotopes from the earth to the archaeological skeleton: a review”, Journal of archaeological method and theory, 13, 2006, 135-187.
[35] A. Sillen and M. Kavanagh, “Strontium and paleodietary research: A review”, American journal of physical anthropology, 25, 1982, 67-90.
[36] C. J. Chung and H. Y. Long, “Systematic strontium substitution in hydroxyapatite coatings on titanium viamicro-arc treatment and their osteoblast/osteoclast responses”, Acta Biomaterialia, 7, 2011, 4081-4087.
[37] C. J. Chung and H. Y. Long, “Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses”, Acta Biomaterialia, 7, 2011, 4081-4087.
[38] Y. Han, J. M. Nan, K. W. Xu and J. Lu, “Residual Stresses in Plasma-sprayed Hydroxyapatite Coatings”, Journal of Materials Science Letter, 18, 1999, 1087-1089.
[39] Y. Yang, K. H. Kim and J. L. Ong, “A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying”, Biomaterials, 26, 2005, 327-337.
[40] L. L. Hench, “Bonding mechanism at the interface of ceramic prosthetic materials”, J Biomed Mater Res, 2, 1971, 117-141.
[41] L. Li, X, Lu, Y. Meng and C. M. Weyant, “Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition, and bioactive performance”, Journal of materials science: materials in medicine, 10, 2012, 2359-2368.
[42] Clemson Advisory Board for Biomaterials “Definition of the word biomaterial“, The 6th Annnal Intermalionel Biomaterial Symposium, April, 1974, 20-24.
[43] The Consensus Conference of the European Society for Biomaterials, Chester, England, 1986.
[44] F. H. Silver, “Biomaterials, Medical Devices, and Tissue Engineering: An Integrated Approach”, springer press, 1992, 113-119.
[45] C. W. Cao and L. L. Hench, “Bioactive materials”, Ceramics International, 32, 1996, 493-507.
[46] ASTM F-67, “Standard Specification for Unalloyed Titanium for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 13.01.
[47] ASTM F-136, “Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 13.01.
[48] ASTM F-138, “Standard Specification for Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 13.01.
[49] ASTM F-90, “Standard Specification for Wrought Cobalt-20 Chromium-15 Tungsten-10 Nickel Alloy for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 13.01.
[50] Y. Mu, T. Kobayashi, M. Sumita, A. Yamamoto, T. Hanawa, “Metal ion release from titanium with active oxygen species generated by rat macrophages in vitr”, Journal of biomedical materials research, 49, 2000, 238-243.
[51] R. P. Nitesh and P. P. Gohil, “A Review on Biomaterials: Scope, Applications & Human Anatomy Significance”, International Journal of Emerging Technology and Advanced Engineering, 2, 2012, 91-101.
[52] A. H. Jeffrey, “Biomaterials in Tissue Engineering”, Nature Biotechnology, 13, 1995, 565-576.
[53] Y. M. Chen, T. F. Xi Y. P. Lv and Y. D. Zheng, “In vitro biological performance of nano-particles on the surface of hydroxyapatite coatings”, Applied Surface Science, 255, 2008, 375-378.
[54] L. L. Hench and E.C. Ethridge, “Biomaterials: An Interfacial Approach”, Academic Press, 1982, 18-21.
[55] S. D. Cook, K. A. Walsh, and R. J. Haddad, “Interface Mechanics and Bone Growth into Porous Co-Cr-Mo Alloy Implants”, Orthopaedics and Related Research, 193, 1985, 271-280.
[56] R. B. Heimann, “Materials Science of Crystalline Bioceramics: A Review of Basic Properties and Applications”, Carnegie Mellon University, 1, 2002, 23-46.
[57] H. Tschernitschek, L. Borchers and W. Geurtsen, “Nonalloyed titanium as a bioinert metal-a review”, Quintessence international, 36, 2005, 523-530.
[58] T. Fujiu, and M. Ogino, “Difference of Bone Bonding Behavior Among Surface Active Glasses and Sintered Apatite”, Journal of biomedical materials research, 18, 1984, 845-859.
[59] K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, and M. Oka, “Bone-Bonding Ability of P2O5-free CaOSiO2 Glasses”, Journal of biomedical materials research, 25, 1991, 357-365.
[60] T. Kitsugi, T.Yamamuro, H. Takeuchi, and M. Ono, “Bonding Behavior of Three Types of Hydroxyapatite with Different Sintering Temperatures Implanted in Bone”, Clinical Orthopaedics and Related Research, 234, 1988, 280-290.
[61] D. Hutmache, M. B. Hürzeler and H. Schliephake, “A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications”, The international journal of oral & maxillofacial implants, 5, 1996, 667-678.
[62] R. M. Pilliar, H. U. Cameron and A. G. Binnington, “Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate”, Journal of Biomedical Matrials Research, 13, 1979, 799-810.
[63] P.I. Brånemark, B.O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallen, A. Öhman, “Osseointegrated implants in the treatment of edentulous jaw experience from a 10-year period”, Scandinavian journal of plastic and reconstructive surgery. Supplementum, 16, 1977, 1-132.
[64] D.I Bardos, “Titanium and titanium alloys”, Pergamon Press, Oxford, 1990, 360-365.
[65] M Pourbaix, “Electrochemical corrosion of metallic biomaterials”, Biomaterials, 5, 1984, 122-134.
[66] V. V. ANDREEVA, “Behavior and Nature of Thin Oxide Films on Some Metals in Gaseous Media and in Electrolyte Solutions”, The journal of Scienceand Engineering, 20, 1964, 35t-46t.
[67] Kuan-Chen Kung, Tzer-Min Lee and Truan-Sheng Lui, “Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation”, Journal of Alloys and Compounds, 508, 2010, 384-390.
[68] U. Diebold, “The surface science of titanium dioxide”, Surface science reports, 48, 5-8.
[69] T. Albreksson, G. Zarb and A. R. Eriksson, “The long-term efficacy of currently used dental implants: a review and proposed criteria of success”, The International Journal of Oral & Maxillofacial Implants, 1, 1986, 11-15.
[70] J. G. Heller, T. Bradley, M. S. Estes and A. Diop, “Biomechanical study of screws in the lateral masses: Variable affecting pull-out resistance”, The Journal of Bone and Joint Surgery, 78, 1996, 1315-1321.
[71] A. A. Romanyukha, M. F. Desrosiers and D. F. Regulla, “Current issues on EPR dose reconstruction in tooth enamel”, Applied radiation and isotopes, 52, 2000, 1265-1273.
[72] S. F. Hulbert, “Bioactive Ceramic-Bone Interface”, CRC press, Florida, 3-6, 1991.
[73] V. Sergey, “Biological and medical significance of calcium phosphates”, Angewandte Chemie, 41, 2002, 3130-3146.
[74] A. S. Dosner and A. Perloff, “Refinement of The Hydroxyapatite”, Acta Crystallographica. 11, 1985, 308.
[75] K. de Groot, “Bioceramics consisting of calcium phosphate salts”, Biomaterials, 1, 47-50, 1980.
[76] N. Ignjatovie, S. Tomic, M. Dakic, M. Miljkovie, M. Plavsic and D. Uskokovic, “Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials”, Biomaterials, 20, 809-816, 1999.
[77] S. D. Cook, J. F. Kay, K. A. Thomas and M. Jarcho, “Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implants applications”, The International Journal of Oral and Maxillofacial Implants, 2, 15-22, 1987.
[78] J.D. Bronzino, The biomedical engineering handbook, CRC Press, 1995.
[79] B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, “Biomaterials Science-An Introduction to Materials in Medicine”, Academic Press, 1996, 37-50.
[80] T. J. Webster, E. A. Massa-Schlueter, J. L. Smith and E. B. Slamovich, “osteoblast response to hydroxyapatite doped with divalent and trivalent cations”, Biomaterials, 25, 2111-2121, 2004.
[81] S. G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. D. Delmas and C. Christiansen, “Incorporation and distribution of strontium in bone”, Biomaterials, 4, 446-453, 2001.
[82] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao and Y. W. Chen, “Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds”, Biomaterials, 27, 2006, 1277-1286.
[83] P. J. Marie, M. T. Garba, M. Hott and L. Miravet, “Effect of low doses of stable strontium on bone metabolism in rats”, Mineral and Electrolyte Metabolism, 11, 1985, 5-13.
[84] E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, “The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro”, Bone, 18, 517-523, 1996.
[85] P. J. Marie, P. Ammann, G. Boivin and C. Rey, “Mechanisms of action and therapeutic potential of strontium in bone”, Calcified Tissues International, 69, 121-129, 2001.
[86] L. Li, X, Lu, Y. Meng and C. M. Weyant, “Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition, and bioactive performance”, Journal of materials science: materials in medicine, 10, 2012, 2359-2368.
[87] 楊永欽,”殘留應力對電漿熔射氫氧基磷灰石塗層與鈦鋁釩合金基材間結合強度之研究” 國立成功大學材料科學及工程研究所博士論文,2003。
[88] S. Ding, C. Ju and J.C. Lin, “Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate”, Journal of biomedical materials research, 44, 1999, 266-279.
[89] L. L. Hench and J. K. West, “The Sol-Gel Process”, Chemical reviews, 90, 1990, 33-72.
[90] W. H. Song, Y. K. Jun, Y. Han. b, S. H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania”, Biomaterials, 25, 2004, 3341-3349.
[91] L. Li, X, Lu, Y. Meng and C. M. Weyant, “Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition, and bioactive performance”, Journal of materials science: materials in medicine, 10, 2012, 2359-2368.
[92] I. Zhitomirsky and A. Petric, “Cathodic electrodeposition of polymer films and organoceramic films”, Materials Science and Engineering B, 78, 125-130, 2000.
[93] S. K. Yen and C. M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”, Materials Chemistry and Physics, 77, 70-76, 2002.
[94] M. C. Kuo and S. K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature”, Materials Science and Engineering C, 20, 153-160, 2002.
[95] Y. Han, K. Xu, J. Lu and Z. Wu, “The structural characteristics and mechanical behaviors of nonstoichiometric apatite coatings sintered in air atmosphere”, Journal of Biomedical Materials Research, 3, 1999, 198-203.
[96] S. Downes, C. J. Clifford, C. Scotchford and C. P. A. T. Klein, “Comparison of the release of growth hormone from hydroxyapatite, heat-treated hydroxyapatite, and fluoroapatite coatings on titanium”, Journal of Biomedical Materials Research, 29, 1995, 1053-1060.
[97] 林奇民,”The studt of electrolytic deposition of Al2O3-HA bioceramic on pure titanium”,國立中興大學材料工程學研究所,碩士論文,2000。
[98] ASTM D3359-09, “Standard Test Methods for Measuring Adhesion by Tape Test”, Annual Book or ASTM Standards, American Society for Testing and Materials.
[99] N. Eliaz, T. M. Sridhar, U. Kamachi Mudali and Baldev Raj, “Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications”, Surface Engineering, 21, 2005, 238-242.
[100] L. Besraa and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD)”, Progress in materials science, 52, 2007, 1-61.
[101] M. Shirkhanzadeh, “Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes”, Journal of Materials Science: Materials in Medicine, 6, 1995, 90-93.
[102] J. M. Zhang, C.J. Lin, Z. D. Feng and Z. W. Tian, “Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique”, Journal of electroanalytical chemistry, 452, 1998, 235-240.
[103] M. Shirkhanzadeh, “Bioactive calcium phosphate coatings prepared by electrodeposition”, Journal of materials science letters, 10, 1991, 1415-1417.
[104] R. F. Weiss, “Carbon dioxide in water and seawater: the solubility of a non-ideal gas”, Marine Chemistry, 2, 1974, 203-215.
[105] M. C. Wang, W. J. Shih, K. M. Chang, S. H. Wang, W. L. Li and H. H. Huang,” Effect of process parameters on the crystallization and morphology of calcium phosphate at a constant pressure of 80 Torr”, Journal of Non-Crystalline Solids, 356, 2010, 1546-1553.
[106] S. Ban and S. Maruno, “Hydrothermal–electrochemical deposition of hydroxyapatite”, Journal of biomedical materials research, 42, 1998, 387-395.
[107] C. C. Yang, C. C. Lin and S. K. Yen, “Electrochemical Deposition of Vancomycin/Chitosan Composite on Ti Alloy”, Journal of The Electrochemical Society, 158, 2011, 152-158
[108] K. H. Kim and N. Ramaswamy, “Electrochemical surface modification of titanium in dentistry”, Dental materials journal., 28, 2009, 20-36.
[109] A. R Boccaccini and I. Zhitomirsky, “Application of electrophoretic and electrolytic deposition techniques in ceramics processing”, Current opinion in solid state and materials science, 6, 2002, 251-260.
[110] G. Daculsi, “Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute”, Biomaterials, 19, 1998, 1473-1478.”
[111] L.M. Rodrı́guez-Lorenzo, M. Vallet-Regı́ and J.M.F. Ferreira, “Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder, “Biomaterials, 22, 2001, 583.
[112] Z.W. Zheng, I. Sridhar and S. Balakumar, “A comparative study on the measurement of toughness of stacks containing low-k dielectric films”, Microelectronic engineering, 85, 2008, 2322-2328.
[113] K. Ozehi, T. Yuhta and Y. Fukui, A functionally graded titanium/hydroxyapatite film obtained by sputtering, Journal of materials science: Materials in medicine, 13, 2002, 253-258.
[114] J. L. Arias, M. B. Mayor, J. Pou, Y. Leng, B. León and M. P. Amor, “Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition”, Biomaterials, 24, 2003, 3403-3408.
[115] L. Łatka, L. Pawlowski, D. Chicot, C. Pierlot and F. Petit, “Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid”, Surface and coatings technology, 205, 2010, 954-960.
[116] K. A. Khor, Z. L. Dong, C. H. Quek and P. Cheang, “Microstructure investigation of plasma sprayed HA/Ti6Al4V composites by TEM”, “Materials Science and Engineering”, 281, 2000, 221-228.
[117] Y. M. Lim, Y. J. Park, Y. H. Yun, K. S. Hwang, “Functionally graded Ti/HAP coatings on Ti–6Al–4V obtained by chemical solution deposition”, Ceramics International, 28, 2002, 37-41.
[118] M. Wei, A. J. Ruys, B. K. Milthorpe, C. C. Sorrell and J.H. Evans, “Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach”, Journal of Sol-Gel Science and Technology, 21, 2001,39-48.
[119] C.C. Chen, T.H. Huang, C.T. Kao and S. J. Ding, “Electrochemical study of the in vitro degradation of plasma-sprayed hydroxyapatite/bioactive glass composite coatings after heat treatment”, Electrochimica Acta, 50, 2004, 1023-1029.
[120] Yi-Pang Lee, C. K. Wang, T. H. Huang, C. C. Chen, C. T. Kao and S. J. Ding, “In vitro characterization of postheat-treated plasma-sprayed hydroxyapatite coatings”, Surface and Coatings Technology, 197, 2005, 367-374.
[121] Y. Wang, L. Liu and S. Guo, “Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro”, Polymer Degradation and Stability, 95, 2010, 207-213.
[122] C. J. Chung and H. Y. Long, “Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast response”, Acta biomaterialia, 11, 2011, 4081-4087.
[123] K. C. Kung, K. Y uan, T. M. Lee and T. S. Lui, “Effect of heat treatment on microstructures and mechanical behavior of porous Sr–Ca–P coatings on titanium”, “Journal of Alloys and Compounds”, 515, 2012, 68-73.
[124] J. Yan, J. F. Sun, P. K. Chu, Y. Han and Y. M. Zhang, “Bone integration capability of a series of strontium-containing hydroxyapatite coatings formed by micro-arc oxidation”, Journal of biomedical materials research, 2013, published.
[125] K. Nan, T. Wua, J. Chen, S. Jiang, Y. Huang and G. Pei, “Strontium doped hydroxyapatite film formed by micro-arc oxidation”, Materials science and engineering C, 29, 2009, 1554-1558.
[126] K. C. Kung, T. M. Lee, J. L. Chen and T. S. Lui, “Characteristics and biological responses of novel coatings containing strontium by”, Surface and coatings technology, 205, 2010, 1714-1722.
[127] T. M. Lee, R. S. Tsai and E. Chang, The cell attachment and morphology of neonatal rat calvarial osteoblasts on the surface of Ti-6Al-4V and Pplasma- sprayed HA coating: effect of surface roughness and serum contents, Journal of materials science: Materials in medicine, 13, 2002, 341-350.