簡易檢索 / 詳目顯示

研究生: 林耕宇
Lin, Keng-Yu
論文名稱: 兩資產障礙選擇權之評價-應用邊界積分法
The Pricing of Continuous Two-Asset Barrier Option with Boundary Integral Method
指導教授: 沈士育
Shen, Shin-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 73
中文關鍵詞: 兩資產邊界積分法連續式障礙選擇權
外文關鍵詞: barrier option, boundary integral method, two-asset
相關次數: 點閱:54下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用邊界積分法評價兩資產連續式障礙選擇權,先利用變數變換將較為複雜的Black and Scholes equation 轉換成線性同質方程式(Linear homogeneous equation),因此可使用邊界積分法(Boundary  Integral Method)獲得精確之數值解。
    在本研究中,我們以邊界積分法(Boundary Integral Method;BIM)作為我們的數值法,以一例子去測試邊界積分法之可靠性,且獲得不錯的結果。利用邊界積分法去解得兩資產連續式障礙選擇權之價格。最後再調整各項參數值,以相關係數、波動率和障礙價格等變化以瞭解各參數的變動對選擇權價值所產生的影響,並與兩資產離散式障礙選擇權價格作一比較。

    In study, a boundary integral method is designed to evaluation barrier option. The parabolic PDE(Partial Differential Equation)is transformed into a linear homogeneous equation, then the boundary integral representation is derived. A two dimensional numerical integration is applied to the representation. An example with exact solution is used to test the numerical method. The result is highly accurate.
    Two practical examples are evaluated with this method. The results are used to compare with the valuation of two assets discrete barrier option, and sensitive analysis for parameters is presented.

    第一章 緒論 1.1 選擇權簡介 --------------------------------------------------------1 1.2 多重資產障礙選擇權之介紹 ------------------------------------------5 1.3 文獻探討 ----------------------------------------------------------9 1.4 研究範圍和章節大綱 -----------------------------------------------13 第二章 數學模型與邊界理論 2.1 兩資產一般型態之PDE ----------------------------------------------15 2.2 線性同質方程式 ---------------------------------------------------18 2.3 兩資產障礙選擇權之積分表現法 -------------------------------------22 第三章 數值方法 3.1 Green’s function 與 邊界積分法 ----------------------------------26 3.2 邊界積分法之可靠性 -----------------------------------------------28 第四章 數值例 4.1 數值例 -----------------------------------------------------------33 4.2 兩資產障礙選擇權(Rebate=0)--------------------------------------37 4.3 兩資產最大值障礙選擇權(Rebate≠0)-------------------------------48 4.4 實例價格 ---------------------------------------------------------59 第五章 結論 --------------------------------------------------------------64 參考文獻 ------------------------------------------------------------------71

    【1】陳威光,2004,「衍生性金融商品-選擇權、期貨與交換」,智勝文化事業有公司
    【2】張志強,2002,「選擇權與投資」,五南圖書出版公司
    【3】謝劍平,2001,「金融市場」,三民書局
    【4】蔡瓊霈,2005,「2004年全球衍生性商品交易概況分析」,臺灣期貨市場雙月刊3
    【5】Galitz, Lawrence C.,1995,“Financial Engineering:tools and techniques to manage financial risk,“Irwin, NY,.
    【6】Black,F., and M.Scholes,1972,“The Valuation of Option Contracts and a Test of Market Efficiency”,Journal of Finance 27,399-417
    【7】許溪南,張博彥,2002,「台灣上限型認購權證之評價與避險」,企業管理學報第54期(91年9月)
    【8】Merton,R.C.,1973,“Theory of Rational Option Pricing”,Bell Journal of Economics and Management Science 4,141-183.
    【9】Boyle,P.P., and S.H.Lau,1994,Bumping Up Against the Barrier with the Binomial Method, Journal of Derivatives 2,6-14.
    【10】Cox,J.C., S.A.Ross, M.Rubinstein,1979,“Option Pricing:A Simplified Approach”,Journal of Financial Economics 7,229-264.
    【11】Ritchken,P.,1995,“On Pricing Barrier Options”,Journal of Derivatives 3,19-28.
    【12】Ckeuk.T.H.F.,and T.C.F.Vorst,1995,“Complex Barrier Options”, Journal of Derivatives 4,8-22
    【13】Broadie,M., P.Glasserman, and S.Kuo,1997,“A Continuity Correction for Discrete Barrier Options”,Mathematical Finance 7,325-348
    【14】Ahn,D.,S.Figlewski,B.Gao,1999,Pricing Discrete Barrier Options with an Adaptive Mesh Model, Journal of Derivatives 2,33-44.
    【15】Pooley,D.M.,P.A.Forsyth,K.R.Vetzal,and R.B.Simpson,2000,“An Unstructured Meshing for Two Asset Barrier Options,”Applied Mathematical Finance 7,33-60.
    【16】Topper,J.,1998,“Finite Element Modeling of Exotic Options,” Discussion Paper 216,University of Hannover, Version Dec.27.
    【17】Topper, J., 2001, Worst Case Pricing of Rainbow Options, Discussion Paper 217.
    【18】Stulz,R.M., 1982,“Options on the Minimum or Maximum of Two Risky Assets”Journal of Financial Economics 10,161-185
    【19】Margrabe,W.,1978,The value of an option to exchange one asset for another, Journal of Finance 33,86–177.
    【20】Johnson,H.,and D.Shanno,1987,“Option Pricing when the Variance is Changing”,Journal of Financial and Quantitative Analysis 22,143-151
    【21】Cox, J.C.,and S.A.Ross,1976,The Valuation of Options for Alternative Stochastic Processes, Journal of financial Economics 3,145-166.
    【22】Boyle,P.P., and Y.K. Tse,1990, An Algorithm for Computing Values of Options on the Maximum or Minimum of Several Assets, Journal of Financial and Quantitative Analysis 25,215–227.
    【23】Rubinstein,Mark,1991,Somewhere Over the Rainbow,RISK 4,63-66.
    【24】Rubinstein,Mark,1994,Return to Oz, RISK 7,67-71.
    【25】Topper,J.,2001,Worst Case Pricing of Rainbow Options, Discussion Paper 217.
    【26】Hull, John C.,2003,Options,Futures,and Other Derivatives,7th ed, (Prentice Hall press).
    【27】Espen Gaarder Haug,1999,「選擇權訂價公式手冊」,聯經出版公司
    【28】戴全利,2002,「多資產離散式障礙選擇權之評價」,國立成功大學財務金融研究所碩士論文,未出版
    【29】陳柏州,2003,「多資產離散式障礙選擇權評價」,國立成功大學財務金融研究所碩士論文,未出版

    下載圖示 校內:2009-07-06公開
    校外:2009-07-06公開
    QR CODE