| 研究生: |
甘名倫 Kan, Ming-Lun |
|---|---|
| 論文名稱: |
構架結構倒塌模式庫建立 Establishing the Collapse Mode Database for Frame Structures |
| 指導教授: |
侯琮欽
Hou, Tsung-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 相似度演算法 、資料庫完整性 、建築資訊模型 、搜索與救援 、候選解 |
| 外文關鍵詞: | similarity algorithm, database integrity, building information modeling, search and rescue, candidate solution |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處環太平洋地震帶,因板塊相互擠壓導致地震頻繁,而極端規模的地震常造成嚴重災情。地震災害後首要任務是搶救受困者,若能在黃金72小時內進行有效地搜索與救援(search and rescue, SAR)便能大幅降低傷亡。因此吾人結合建築資訊模型(building information modeling, BIM)與動態模擬(dynamic simulation)系統,以及為驗證相似度演算法的可行性,利用候選解的概念針對構架結構進行倒塌模擬欲建立其倒塌模式資料庫。主要內容為建立14種構架結構模型,匯入物理引擎(Bullet Constraints Builder, BCB)並對BCB倒塌模擬進行假設以建立倒塌模擬資料庫,再藉由歐式距離相似度、餘弦相似度及Bloch相似度三種相似度演算法對倒塌資料庫進行資料庫完整性分析,建立完整的構架結構倒塌模式資料庫。最終假設一倒塌個案作為實際案例進行案例比對,透過三種相似度演算法同時篩選,從倒塌模式資料庫中搜索出對應的倒塌模式。
本研究成果為相似度演算在判定簡易構架模型時表現優異,且在複雜之高層樓構架結構模型亦能找出對應整體的倒塌模式,是因為資料庫完整性分析能提高資料庫整體性能。且案例比對因同時使用三種相似度指標進行搜索,故能有效地找出最佳解,但所得倒塌模式並非一定是距離最接近解,優先考量整體結構的餘弦相似度能先篩選出相同傾倒方向的倒塌模式,再以距離法去判定其相似程度,能更正確地搜索到最佳解。最後藉由比對成功案例,對三種相似度指標與柱構件及梁構件分開討論可以驗證本研究對倒塌模擬進行的假設,將三種相似度指標互相迴歸分析可知歐式距離法主導著Bloch相似度的表現,因此吾人認為相似度演算法應以歐式距離為主餘弦為輔去進行分析。
Taiwan is located on the Ring of Fire. Frequent earthquakes are due to the movement of plates, and extreme earthquakes often cause severe disasters. The primary task after an earthquake disaster is rescuing the trapped. If search and rescue (SAR) can be executed effectively, casualties can be significantly reduced. Therefore, we create a procedure for analyzing structural collapse that combine building information modeling (BIM) and dynamic simulation system. Moreover, to verify the feasibility of similarity algorithm, only frame structures are modeled. The candidate solution concept is used to establish collapse databases. This study build 14 frame structural models, then import them to the physics engine and make hypothesis on collapse simulation. Hence, use Euclidean distance similarity, cosine similarity and Bloch similarity to analyze the integrity of databases, then establish collapse mode databases. Finally, generate a collapse case as an actual case, then filter simultaneously through three similarity indicators to figure out the corresponding collapse mode from database.
The results show that the similarity algorithm is outstanding in simple frame structures, and it can also perform well in complex high-rise frame structures, because database integrity can improve the ability of databases. Furthermore, prioritizing the cosine similarity can obtain the same direction case first, then use distance similarity method, which can accurately search for the best solution. Finally, discussing three similarity indicators from column and beam can verify the collapse simulation hypothesis of this study. The regression analysis of three similarity indicators show that Euclidean similarity dominates the performance of Bloch similarity.
[1]. Al-kheder, S., Y. Al-shawabkeh, and N. Haala, Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. Journal of Archaeological Science. 36(2): p. 537-546. 2009
[2]. Almac, U., I.P. Pekmezci, and M. Ahunbay, Numerical Analysis of Historic Structural Elements Using 3D Point Cloud Data. The Open Construction and Building Technology Journal. 10(1): p. 233-245. 2016
[3]. Azhar, S., Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and management in engineering. 11(3): p. 241-252. 2011
[4]. Bailey, T. and J.E. Hubbard Jr, Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics. 8(5): p. 605-611. 1985
[5]. Barazzetti, L., Parametric as-built model generation of complex shapes from point clouds. Advanced Engineering Informatics. 30(3): p. 298-311. 2016
[6]. Barazzetti, L., F. Banfi, R. Brumana, G. Gusmeroli, M. Previtali, and G. Schiantarelli, Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory. 57: p. 71-87. 2015
[7]. Bazazian, D., J.R. Casas, and J. Ruiz-Hidalgo. Fast and robust edge extraction in unorganized point clouds. in 2015 international conference on digital image computing: techniques and applications (DICTA) 2015, IEEE. 2015
[8]. Bloch, T., R. Sacks, and O. Rabinovitch, Interior models of earthquake damaged buildings for search and rescue. Advanced Engineering Informatics. 30(1): p. 65-76. 2016
[9]. Chen, J., Y. Fang, and Y.K. Cho, Unsupervised Recognition of Volumetric Structural Components from Building Point Clouds, in Computing in Civil Engineering 2017. p. 34-42. 2017
[10]. Clough, R.W., Proceedings, 2nd conference on electronic computation, in A.S.C.E. structural division. Pittsburgh, Pa. p. 345–378. 1960
[11]. Cundall, P.A. and O.D. Strack, A discrete numerical model for granular assemblies. geotechnique. 29(1): p. 47-65. 1979
[12]. de Haag, M.U., J. Sayre, J. Campbell, S.D. Young, and R.A. Gray. Flight test results of a synthetic-vision elevation database integrity monitor. in Enhanced and Synthetic Vision 2001, International Society for Optics and Photonics. 2001
[13]. Dehestani, M., A. Asadi, and S. Mousavi, On discrete element method for rebar-concrete interaction. Construction and Building Materials. 151: p. 220-227. 2017
[14]. Diebel, J., Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix. 58(15-16): p. 1-35. 2006
[15]. Eastman, C.M., C. Eastman, P. Teicholz, R. Sacks, and K. Liston, BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons. 2011
[16]. Farid, M., A. Agrawal, D. Fremgen, J. Tao, H. Chuyi, A.B. Nesburn, and L. BenMohamed, Age-related defects in ocular and nasal mucosal immune system and the immunopathology of dry eye disease. Ocular immunology and inflammation. 24(3): p. 327-347. 2016
[17]. Farid, R. and C. Sammut. A relational approach to plane-based object categorization. in Robotics Science and Systems Workshop on RGB-D Cameras 2012. 2012
[18]. Gray, R., Track database integrity monitor for enhanced railroad safety distributed power. Google Patents. 2002
[19]. Gu, J., Efficient local search for very large-scale satisfiability problems. ACM SIGART Bulletin. 3(1): p. 8-12. 1992
[20]. Gu, J., Local search for satisfiability (SAT) problem. IEEE Transactions on systems, man, and cybernetics. 23(4): p. 1108-1129. 1993
[21]. Hohmann, C., K. Schiffner, K. Oerter, and H. Reese, Contact analysis for drum brakes and disk brakes using ADINA. Computers & structures. 72(1-3): p. 185-198. 1999
[22]. Hoos, H.H. and T. Stützle, Stochastic Local Search: Foundations and Applications. Elsevier. 2004
[23]. Hu, H.-T., C.-S. Huang, M.-H. Wu, and Y.-M. Wu, Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering. 129(10): p. 1322-1329. 2003
[24]. James, F., A review of pseudorandom number generators. Computer physics communications. 60(3): p. 329-344. 1990
[25]. Karagülle, H., L. Malgaca, and H. Öktem, Analysis of active vibration control in smart structures by ANSYS. Smart materials and Structures. 13(4): p. 661. 2004
[26]. Kim, C., H. Son, and C. Kim, Fully automated registration of 3D data to a 3D CAD model for project progress monitoring. Automation in Construction. 35: p. 587-594. 2013
[27]. Li, W., Y. Huang, B. Fu, Y. Cui, and S. Dong, Fretting damage modeling of liner-bearing interaction by combined finite element–discrete element method. Tribology International. 61: p. 19-31. 2013
[28]. Li, X., G.Q. Shen, P. Wu, and T. Yue, Integrating Building Information Modeling and Prefabrication Housing Production. Automation in Construction. 100: p. 46-60. 2019
[29]. Li, Y., H. Wu, R. An, H. Xu, Q. He, and J. Xu, An improved building boundary extraction algorithm based on fusion of optical imagery and LiDAR data. Optik. 124(22): p. 5357-5362. 2013
[30]. Lin, S., Computer solutions of the traveling salesman problem. Bell System Technical Journal. 44(10): p. 2245-2269. 1965
[31]. Lin, S. and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem. Operations research. 21(2): p. 498-516. 1973
[32]. Lu, Y., Z. Wu, R. Chang, and Y. Li, Building Information Modeling (BIM) for green buildings: A critical review and future directions. Automation in Construction. 83: p. 134-148. 2017
[33]. Luby, M. and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing. 17(2): p. 373-386. 1988
[34]. Malomo, D., R. Pinho, and A. Penna. Using the applied element method to simulate the dynamic response of full-scale URM houses tested to collapse or near-collapse conditions. in Proceedings of the 16th European Conference on Earthquake Engineering, 16ECEE 2018. 2018
[35]. Meguro, K. and H. Tagel-Din, Applied element method for structural analysis: Theory and application for linear materials. Structural Engineering Earthquake Engineering. 17(1): p. 21s-35s. 2000
[36]. Meguro, K. and H. Tagel-Din, Applied element simulation of RC structures under cyclic loading. Journal of Structural Engineering. 127(11): p. 1295-1305. 2001
[37]. Meguro, K. and H.S. Tagel-Din, Applied element method used for large displacement structural analysis. Journal of Natural Disaster Science. 24(1): p. 25-34. 2002
[38]. Mordanova, A. and G. de Felice, Seismic assessment of archaeological heritage using discrete element method. International Journal of Architectural Heritage. 14(3): p. 345-357. 2020
[39]. Murphy, M., E. McGovern, and S. Pavia. Parametric vector modelling of laser and image surveys of 17th century classical architecture in Dublin. in VAST 2007. 2007
[40]. Murphy, M., E. McGovern, and S. Pavia, Historic building information modelling (HBIM). Structural Survey. 2009
[41]. Olsen, M.J., K.F. Cheung, Y. Yamazaki, S. Butcher, M. Garlock, S. Yim, S. McGarity, I. Robertson, L. Burgos, and Y.L. Young, Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning. Earthquake Spectra. 28(1_suppl1): p. 179-197. 2012
[42]. Olsen, M.J., F. Kuester, B.J. Chang, and T.C. Hutchinson, Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering. 24(3): p. 264-272. 2010
[43]. Olson, D.L. and D. Delen, Advanced Data Mining Techniques. Springer Science & Business Media. 2008
[44]. Pesci, A., G. Teza, E. Bonali, G. Casula, and E. Boschi, A laser scanning-based method for fast estimation of seismic-induced building deformations. ISPRS Journal of Photogrammetry and Remote Sensing. 79: p. 185-198. 2013
[45]. Poppinga, J., N. Vaskevicius, A. Birk, and K. Pathak. Fast plane detection and polygonalization in noisy 3D range images. in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 2008, IEEE. 2008
[46]. Riveiro, B., M.J. DeJong, and B. Conde, Automated processing of large point clouds for structural health monitoring of masonry arch bridges. Automation in Construction. 72: p. 258-268. 2016
[47]. Rusu, R.B., N. Blodow, Z. Marton, A. Soos, and M. Beetz. Towards 3D object maps for autonomous household robots. in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 2007, IEEE. 2007
[48]. Rusu, R.B., Z.C. Marton, N. Blodow, M. Dolha, and M. Beetz, Towards 3D Point cloud based object maps for household environments. Robotics and Autonomous Systems. 56(11): p. 927-941. 2008
[49]. Sacks, R. and R. Barak, Teaching building information modeling as an integral part of freshman year civil engineering education. Journal of professional issues in engineering education and practice. 136(1): p. 30-38. 2010
[50]. Schweizerhof, K., K. Weimar, T. Munz, and T. Rottner. Crashworthiness analysis with enhanced composite material models in LS-DYNA–merits and limits. in LS-DYNA world conference 1998. 1998
[51]. Shakeri, A. and K. Bargi, Use of applied element method for structural analysis. KSCE Journal of Civil Engineering. 19(5): p. 1375-1384. 2015
[52]. Slabaugh, G.G., Computing Euler angles from a rotation matrix. Retrieved on August. 6(2000): p. 39-63. 1999
[53]. Srinivasan, A. The Aleph Manual. 2001; Available from: http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph.
[54]. SUN, D.-z., C.-z. ZHU, and Y.-r. LI, An improved extraction of boundary characteristic from scattered data [J]. Journal of Shandong University (Engineering Science). 1. 2009
[55]. Tang, P., D. Huber, B. Akinci, R. Lipman, and A. Lytle, Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Automation in Construction. 19(7): p. 829-843. 2010
[56]. Turner, M.J., R.W. Clough, H.C. Martin, and L. Topp, Stiffness and deflection analysis of complex structures. journal of the Aeronautical Sciences. 23(9): p. 805-823. 1956
[57]. Volk, R., J. Stengel, and F. Schultmann, Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Automation in construction. 38: p. 109-127. 2014
[58]. Wang, C., Y.K. Cho, and C. Kim, Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in Construction. 56: p. 1-13. 2015
[59]. Wei, S., Building boundary extraction based on lidar point clouds data. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 37: p. 157-161. 2008
[60]. Zeibak-Shini, R., R. Sacks, L. Ma, and S. Filin, Towards generation of as-damaged BIM models using laser-scanning and as-built BIM: First estimate of as-damaged locations of reinforced concrete frame members in masonry infill structures. Advanced Engineering Informatics. 30(3): p. 312-326. 2016
[61]. Zhou, T., B. Hu, J. Sun, and Z. Liu, Discrete element method simulation of railway ballast compactness during tamping process. The Open Electrical & Electronic Engineering Journal. 7(1). 2013
[62]. 吳承晏, 由散亂點雲自動辨識結構基本物件-辨識率與精確度. 國立成功大學土木工程研究所碩士論文: 台南. 2018
[63]. 林育正, 點雲建築資訊模型倒塌模式生成與預測. 國立成功大學土木工程研究所碩士論文: 台南. 2019
校內:立即公開