簡易檢索 / 詳目顯示

研究生: 湖琇涵
Hu, Siou-Han
論文名稱: 鉍添加對銲錫球的顯微組織與機械性質之影響
Effects of Bismuth Addition on Microstructure and Mechanical Properties of SAC Solder Ball
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: SAC305銲錫鉍添加電遷移顯微結構機械性質可靠度
外文關鍵詞: SAC305 solder ball, Bismuth addition, Current-stressing, Microstructure, Mechanical properties, Reliability
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1990年代以後,由於鉛具毒性加上嚴格立法禁止鉛基銲料的使用,促進了無鉛銲料,例如錫-銀-銅(SAC)合金的發展。然而,錫-銀-銅合金依然存在許多問題或未知特性,透過添加第四種合金─鉍可改善錫-銀-銅銲料之物理及化學特性,如熔點、機械性質、可靠度等。銲料的可靠性在電子封裝中起著至關重要的作用,故鉍的添加如何影響銲錫球之微結構與機械性質等引起廣大之研究興趣。
    本研究針對通電前及通電後不同鉍添加量之SAC305-Bi銲錫球進行分析,利用通電實驗模擬銲錫球真實應用至故障之情形。首先,透過EDS成分分析及EBSD結晶結構分析來完成相鑑定。接著分析通電前後不同鉍添加量銲錫球之形貌、介金屬化合物厚度及晶粒尺寸等,並以合理之擴散機制解釋。最後,利用奈米壓痕測輛銲錫球基底之機械性質,並以合理之機制解釋。探討鉍添加對銲錫球顯微結構及機械性質造成之影響。
    實驗結果顯示,鉍添加能使通電前銲錫球基底之晶粒細化並能抑制介金屬化合物Ag3Sn及Cu6Sn5。但鉍的添加卻會促進通電過程中之電遷移現象,使介金屬化合物Cu6Sn5及Cu3Sn之成長速率上升。鉍添加也會使銲錫球基底之硬度提高。

    In the semiconductor industry, the reliability of solder balls plays an important role. Electromigration(EM) is one of the important tests to measure the lifetime of solder balls in microelectronic packages. In this study, the microstructure, mechanical property and the atomic diffusion behavior of SAC305-Bi solder balls were investigated. The microstructure has been characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and electron backscattering diffraction (EBSD).Nanoindent was used to measure the mechanical properties of tin matrix. The growth rate of Cu6Sn5 and Cu3Sn with 2 and 3 wt% bismuth-doping are larger than that of 1wt% bismuth-doping. Bismuth addition hardens the tin matrix.

    中文摘要 I Extended Abstract III 誌謝 XIII 目錄 XVI 表目錄 XXI 圖目錄 XXIV 第一章 前言 1 第二章 文獻回顧 3 2.1銲錫材料之沿革 3 2.2銲錫中之介金屬化合物 6 2.2.1介金屬化合物之種類 6 2.2.2介金屬化合物之形成 9 2.3通電對銲錫球之影響 11 2.3.1電遷移機制 11 2.3.2裂縫傳播機制 16 2.4鉍添加對銲錫特性之影響 17 第三章 材料與實驗方法 22 3.1實驗目的 22 3.2實驗材料及命名 23 3.3通電實驗 24 3.4試片製備 25 3.4.1傳統機械拋光方式 25 3.4.2離子束拋光方式 26 3.5銲錫球之相鑑定 29 3.5.1化學成分分析 (EDS) 29 3.5.2晶體結構分析 (EBSD) 29 3.6銲錫球之顯微組織分析 30 3.6.1 SEM分析 30 3.6.1.1銲錫球橫截面形貌之分析 30 3.6.1.2介金屬化合物生長厚度之分析 30 3.6.2 EBSD分析 32 3.6.2.1介金屬化合物之晶粒尺寸分析 34 3.6.2.2介金屬化合物之面積比例分析 34 3.7 銲錫球基底之機械性質分析 35 第四章 實驗結果 37 4.1不同鉍添加量銲錫球通電前之分析結果 37 4.1.1銲錫球之相鑑定 37 4.1.1.1化學成分分析(EDS) 37 4.1.1.2結晶結構分析(EBSD) 40 4.1.2銲錫球之顯微組織分析 45 4.1.2.1 銲錫球橫截面形貌之分析 45 4.1.2.2銲錫基底之晶粒尺寸分析 48 4.1.2.3介金屬化合物之晶粒尺寸分析 51 4.1.2.4介金屬化合物面積比例分析 56 4.1.2.5介金屬化合物生長厚度之分析 58 4.1.3銲錫球基底之機械性質分析 61 4.2不同鉍添加量銲錫球通電後之分析結果 63 4.2.1銲錫球之相鑑定 63 4.2.1.1化學成分分析(EDS) 63 4.2.1.2結晶結構分析(EBSD) 65 4.2.2銲錫球之顯微組織分析 71 4.2.2.1銲錫球橫截面形貌之分析 71 4.2.2.2銲錫球基底之晶粒尺寸分析 75 4.2.2.3介金屬化合物之晶粒尺寸分析 78 4.2.2.4介金屬化合物之面積比例分析 84 4.2.2.5介金屬化合物生長厚度之分析 86 4.2.3銲錫球基底之機械性質分析 89 第五章 討論 91 5.1鉍添加對銲錫基底顯微組織之影響 91 5.2鉍添加對介金屬化合物顯微組織之影響 93 5.3鉍添加對銲錫球基底機械性質之影響 100 5.4通電前後銲錫球擴散機制之探討 105 第六章 結論 115 參考文獻 116 Curriculum vitae 122

    1.Chong Leong Gan, U. Hashim, 2015, “Evolutions of bonding wires used in semiconductor electronics: perspective over 25 years”, Journal of Materials Science: Materials in Electronics 26, 4412 -4424.
    2.Anna, F. (2008), "System-in-package technology: opportunities and challenges", Quality Electronic Design, ISQED 2008. 9th International Symposium on. IEEE, pp. 589-593
    3.Liang Zhang, Zhi-quan Liu, Sinn-Wen Chen, Yao-dong Wang, Wei-Min Long, Yong-huan Guo, Song-quan Wang, Guo Ye, Wen-yi Liu, 2018, “Materials, processing and reliability of low temperature bonding in 3D chip stacking”, Journal of Alloys and Compounds 750, 980-995.
    4.Xuejun Fan, 2010, “Wafer Level Packaging (WLP): Fan-in, Fan-out and Three-Dimensional Integration”, 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems.
    5.Jin-Yuan Lee, Mou-Shiung Lin, Ching-Cheng Huang, 2004, “Low fabrication cost, fine pitch and high reliability solder bump”, Patent: US6818545B2.
    6.Yuki Ohara, Akihiro Noriki, Katsuyuki Sakuma, Kang-Wook Lee, Mariappan Murugesan, Jichoel Bea, Fumiaki Yamada, Takafumi Fukushima, Tetsu Tanaka, Mitsumasa Koyanagi, 2009, “10 µm fine pitch Cu/Sn micro-bumps for 3-D super-chip stack”, 2009 IEEE International Conference on 3D System Integration.
    7.Kazumasa Tanida, Mitsuo Umemoto, Naotaka Tanaka, Yoshihiro Tomita, Kenji Takahashi, 2004, “Micro Cu Bump Interconnection on 3D Chip Stacking Technology”, Japanese journal of applied physics 43, 2264–2270.
    8.S.L. Wright, R. Polastre, H. Gan, L.P. Buchwalter, R. Horton, P.S. Andry, E. Sprogis, C. Patel, C. Tsang, J. Knickerbocker, J.R. Lloyd, A. Sharma, M.S. Sri-Jayantha, 2006, “Characterization of Micro-bump C4 Interconnects for Si-Carrier SOP Applications”, 2006 Electronic Components and Technology Conference.
    9.Yao-Jen Chang, Cheng-Ta Ko, Kuan-Neng Chen, 2013, “Electrical and Reliability Investigation of Cu TSVs With Low-Temperature Cu/Sn and BCB Hybrid Bond Scheme”, IEEE electron device letters 34, 102-104.
    10.Paul T. Vianco, 2019, “A Review of Interface Microstructures in Electronic Packaging Applications: Soldering Technology” JOM 71, 158-177
    11.M. Ding, G. Wang, B. Chao, P.S. Ho, P. Su, T. Uehling, “Effect of contact metallization on electromigration reliability of Pb-free solder joints”, J. Appl. Phys. 99 (2006) 094906
    12.M.L.Huang, S.Ye,, N.Zhao, “Current-induced interfacial reactions in Ni/Sn-3Ag-0.5Cu/Au/Pd(P)/Ni-P flip chip interconnect”, J. Mater. Res.26 (2011)3009.
    13.B.L. Liu, Y.H. Tian, J.K. Qin, R. An, R. Zhang, C.X. Wang,“Degradation behaviors of micro ball grid array (μBGA) solder joints under the coupled effects of electromigration and thermal stress”, J.Mater. Sci. 27 (2016) 11583.
    14.Y.W. Chang, Y. Cheng, L. Helfen, F. Xu, T. Tian, M. Scheel, M. Di Michiel, C. Chen, K.N. Tu, T. Baumbach, “Electromigration mechanism of failure in flip-chip solder joints based on discrete void formation”,Sci. Rep. 7 (2017) 17950.
    15.Vinet M, Batude P, Fenouillet-Beranger C, et al. Monolithic 3D integration: a powerful alternative to classical 2D scaling. IEEE. 2014:1–3.
    16.Fukushima T, Bea J, Kino H, et al. Reconfigured-wafer-to-wafer 3-D integration using parallel self-assembly of chips with Cu–SnAg microbumps and a nonconductive film. IEEE Trans Electron Devices. 2014;61:533–539.10.1109/TED.2013.2294831
    17.Wu X. 3D-IC technologies and 3D FPGA. IEEE. 2015:KN1. 1–KN1. 4.
    18.M. Abtew, G. Selvaduray, Mater Sci Eng R, 27 (2000), p.95
    19.K.Zeng, K.N.Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering R38(2002)55-105.
    20.J. Cannis, Green. IC. Packing, Adv. Packing. (8)(2001)33-38.
    21.El-Daly A, Al-Ganainy G, Fawzy A, et al. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn–1.0 Ag–0.5 Cu lead-free solder alloy. Mater Eng (Reigate, U. K.). 2014;55:837–845.
    22.El-Daly A, El-Taher A, Dalloul T. Improved creep resistance and thermal behavior of Ni-doped Sn–3.0 Ag–0.5 Cu lead-free solder. J Alloys Compd. 2014;587:32–39.10.1016/j.jallcom.2013.10.148
    23.Xiaowu Hu, Tao Xu, Xiongxin Jiang, Yulong Li, Yi Liu, Zhixian Min, Appl. Phys. A, 122 (2016), pp. 278-287
    24.Xiaowu Hu, Tao Xu, Xiongxin Jiang, Yulong Li, J. Mater. Sci.: Mater. Electron., 27 (2016), pp. 4245-4252
    25.Guang Chen, Fengshun Wu, Changqing Liu, Weisheng Xia, Hui Liu, Mater. Sci. Eng.: A, 636 (2015), pp. 484-492
    26.Yanhong Tian, Chunjin Hang, Chunqing Wang, Shihua Yang, Pengrong Lin, Mater. Sci. Eng..: A, 529 (2011), pp. 468-478
    27.H.B. Qin, X.P. Zhang, M.B. Zhou, J.B. Zeng, Y.-W. Mai, Mater. Sci. Eng.: A, 617 (2014), pp. 14-23
    28.R.E. Pratt, E.I. Stromswold, D.J. Quensnel Effect of solid-state intermetallic growth on the fracture toughness of Cu/63Sn–37Pb solder joints, EEE Trans Compon Packag Manuf Technol Part A, 19 (1996), pp. 134-141
    29.X. Ma, Y.Y. Qian, F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability J Alloys Compd, 334 (2002), pp. 224-227
    30.A. Hayashi, C.R. Kao, Y.A. Chang Reactions of solid copper with pure liquid tin and liquid tin saturated with copper Scr Mater, 37 (1997), pp. 393-398
    31.C.H. Yu, K.L. Lin, The atomic-scale studies of the behavior of the crystal dissolution in a molten metal, Chem Phys Lett, 418 (2006), pp. 433-436
    32.K.S. Kim,S.H.Huh, K.Sugamuna. Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu. Microelectronics Reliability43(2003)259-267.
    33.Shunfeng Cheng , Chien-Ming Huang, Michael Pecht A review of lead-free solders for electronics applications MR-12433; No of Pages 19
    34.J. Shen , Y.C. Chan , S.Y. Liu Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification, Intermetallics 16 (2008) 1142–1148
    35.D.K. Mu, S.D. McDonald , J. Read , H. Huang , K. Nogita, Critical properties of Cu6Sn5 in electronic devices: Recent progress and a review, Solid State and Materials Science 20 (2016) 55–76
    36.Deyi Qu, Caiju Li, Longke Bao, Zhuangzhuang Kong, Yonghua Duan Structural, electronic, and elastic properties of orthorhombic, hexagonal, and cubic Cu3Sn intermetallic compounds in Sn–Cu lead-free solder, Journal of Physics and Chemistry of Solids (2019)
    37.Erika Hodúlováa, Marián Palcutb,∗, Emil Lechoviˇca, Beáta ˇSimekováa, Koloman Ulricha Kinetics of intermetallic phase formation at the interface of Sn–Ag–Cu–X (X = Bi, In) solders with Cu substrate, Journal of Alloys and Compounds 509 (2011) 7052–7059
    38.Xiaowu Hu, TaoXua, LeonM.Keer, YulongLi, Xiongxin Jiang MicrostructureevolutionandshearfracturebehaviorofagedSn3Ag0.5Cu/Cu solder joints, Materials Science&EngineeringA673(2016)167–177
    39.Glenn A. Rinne, Issues in accelerated electromigration of solder bumps, Microelectronics Reliability 43 (2003) 1975–1980
    40.Syahira Annuara , Reza Mahmoodian, Mohd Hamdi and King-Ning Tu, Intermetallic compounds in 3D integrated circuits technology: a brief review, Science and Technology of Advanced Materials, 2017VOL. 18, NO . 1, 693–703
    41.Kim S-H, Park G-T, Park J-J, et al. Effects ofannealing, thermomigration, and electromigration on the intermetallic compounds growth kinetics of Cu/Sn-2.5 Ag microbump. J Nanosci Nanotechnol.2015;15:8593–8600.
    42.Tian S, Wang F, Li D, et al. Effect of electromigration of Sn-xAg-Cu solder joints on its microstructure and mechanical properties. IEEE. 2015:256–259
    43.Delphic Chen, Cheng-En Ho , Jui-Chao Kuo Current stressing-induced growth of Cu3Sn in Cu/Sn/Cu solder joints, Materials Letters 65 (2011) 1276–1279
    44.Reza Sayyadi, Homam Naffakh-Moosavy, The Role of Intermetallic Compounds in Controlling the Microstructural, Physical and Mechanical Properties of Cu-[Sn-Ag-Cu-Bi]-Cu Solder Joints, Scientific Reports | (2019) 9:8389
    45.S. A. Belyakov J. Xian1 G. Zeng K. Sweatman· T. Nishimura ·T. Akaiwa C. M. Gourlay, Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints, Journal of Materials Science: Materials in Electronics (2019) 30:378–390
    46.P.T. VIANCO and J.A. REJENT, Properties of Ternary Sn-Ag-Bi Solder Alloys: Part I—Thermal Properties and Microstructural Analysis, Journal of Electronic Materials,Vol.28,No.10,1999
    47.LAI Yanqing, HU Xiaowu, LI Yulong, JIANG Xiongxin, Influence of Bi Addition on Pure Sn Solder Joints: Interfacial Reaction, Growth Behavior and Thermal Behavior, Vol.34 No.3 LAI Yanqing et al

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE