簡易檢索 / 詳目顯示

研究生: 王美雲
Wang, Mei-Yun
論文名稱: 以定量PCR技術監測Clostridium butyricum CGS5的產氫酵素與Caldimonas taiwanensis On1T的澱粉水解酵素之基因表現
Quantitation of cDNA transcripts to monitor expression of hydrogenase from Clostridium butyricum CGS5 and amylase from Caldimonase taiwanensis On1T
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 231
中文關鍵詞: 澱粉水解酵素生物產氫牛血清蛋白暗醱酵基因表現產氫酵素基因產氫酵素PCR抑制反應定量PCR反轉錄PCR
外文關鍵詞: Amylase, biohydrogen, bovine serum albumin (BSA), Caldimonas taiwanensis, Dark H2 fermentation, Clostridium butyricum, gene expression, hydA gene, hydrogenase, PCR inhibition, Reverse transcription PCR (RT-PCR), quantitative PCR (qPCR)
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討在生物產氫的系統程序中,暗醱酵厭氧產氫與生物產氫系統的功能性基因(產氫酵素)之間的關係。在研究中,以篩選自厭氧醱酵污泥槽的Clostridium butyricum CGS5為菌種範本。而在暗醱酵產氫系統中,產氫酵素是氫氣生成反應中的主要酵素。因此,在暗醱酵產氫的培養系統中,監測產氫酵素的基因表現是一個可靠的偵測方法。實驗結果印證了生物產氫功能性基因的表現(產氫酵素基因序列來自於Clostridium butyricum CGS5,乃篩選自活性污泥的本土性產氫菌種)與生物產氫效能之間的關係,並且培養在蔗糖為唯一碳源的反應器中。完整的Clostridium butyricum CGS5產氫酵素基因序列是以primer cross-linking和PCR產物定序方式來進行基因序列的解碼。接著,根據由解碼方式所得到的產氫酵素基因序列來設計的PCR和qPCR反應所需要用到的探針引子,並且利用所設計的探針引子和qPCR技術來偵測已經由反轉錄形成的cDNA的產氫酵素RNA的copy number。實驗結果顯示,Clostridium butyricum CGS5的氫氣生成速率與產氫酵素基因表現(也可作為產氫酵素基因cDNA的copy number)有線性正比的關係存在,而生物菌種濃度的曲線趨勢圖與產氫酵素DNA的copy number有相似的趨勢。
    在整個產氫厭氧醱酵過程中,不論是產氫酵素DNA和反轉錄的產氫酵素基因(PCR複製反應作用後)的copy number,還是DNA和RNA的核酸總量(PCR複製反應作用前)都隨著CGS5菌種的生長被監測。在PCR複製反應過程後,產氫酵素DNA的copy number在菌種生長對數後半期與菌種生長初期比較結果有100倍以上的增加量,而反轉錄後的產氫酵素基因的copy number在菌種生長對數後半期與菌種生長初期的比較也有500倍的增加。來自mRNA反轉錄而得的產氫酵素的表現量與DNA和RNA的核酸總量的表現相比較則有滯遲的現象發生,然而產氫酵素DNA copy number的增加趨勢與DNA核酸總量有極為相似的地方。以上所討論的分子性質層面或生長的各種因素均與氫氣生成有其對應關係。16S rRNA的反轉錄表現在38小時有最大量的出現,而其出現的時間比產氫酵素的反轉錄量(在48小時)來得早。因此,所有產氫酵素的分子性質與蔗糖基質利用反應、菌種生長和氫氣生成都有相符合的趨勢。這些實驗說明了基因表現量(如反轉錄形成cDNA)可以與氫氣生產效率有相對關係存在,也可能被利用當作程序控制系統的應用工具。
    在PCR與qPCR反應過程中,我們利用監測Clostridium butyricum CGS5的產氫基因的方式來尋找添加牛血清蛋白(BSA)以避免PCR反應抑制物之最佳化濃度。在改善PCR偵測限制實驗中,100 ng/l 的BSA濃度比目前所找到的文獻論文中所使用的BSA濃度來的低且較具有效率。在以添加100 ng/l 的BSA來增加PCR效應的PCR實驗中,有添加BSA的反應會使得PCR產物有較亮且多的螢光反應在具有螢光染劑(ethidium bromide)的溶液中、有最低的偵測限制及較大值的Ct值。BSA效應不僅能應用於PCR和qPCR反應中,也可以應用於絕大多數的微生物反應系統上。當添加的BSA濃度大(等)於100 ng/l時,利用qPCR來測量基因複製的copy number可能會有所減少、Ct值可能增加而PCR產物的Tm值則有可能會因此而改變。但是在PCR產物的SYBR Green dissociation的圖形中,以DNA為目標基因的純菌菌種系統或混菌菌種系統,均顯示100 ng/ l的BSA濃度可以減少圖形中peak面積及Tm值的變化量。
    最後,RT-PCR和qPCR技術證明也可以被利用在不同的微生物系統的可行性,例如以Caldimonas taiwanensis On1T則可在多酵素共同作用系統中水解澱粉。在Caldimonas taiwanensis On1T的澱粉水解醱酵過程中,從實驗結果也可以看出已熟知的澱粉水解酵素的基因表現與澱粉水解活性的趨勢相符合。以Caldimonas taiwanensis On1T為菌種的澱粉水解系統中,假設已知的澱粉水解酵素是主要的澱粉水解酵素。實驗結果也證明顯示,可以應用新興的分子生物技術(結合RT-PCR和qPCR技術)來擴大微生物應用系統來探討監測基因表現和生物功能之間的關係。

    This study was undertaken to identify the relationship between the performance of dark H2 fermentation and expression of the key functional gene (i.e., hydrogenase gene) involved in the bioH2 production process. Clostridium butyricum CGS5 isolated from anaerobic sewage sludge was used as the model strain for this study. Hydrogenase is the key enzyme responsible for bioH2 production in dark fermentation. Therefore, the expression of hydrogenase gene is a good indicator for the performance of a dark H2 fermentation culture. We investigated the correlation between expression of the functional gene (hydA encoding for hydrogenase in C. butyricum CGS5) and bioH2 production activity during batch growth, where an indigenous H2-producing isolate C. butyricum CGS5 used sucrose as the sole carbon source. The full sequence of hydA gene of C. butyricum CGS5 (2174 bps in size) was decoded via primer cross-linking and amplicons sequencing techniques. The copy number of hydA mRNA was determined by reverse transcription and real time quantitative PCR (qPCR) using designed probes according to hydA gene sequence. The results indicated that the hydrogen production rate of C. butyricum CGS5 was proportional to the level of hydA expression (represented by the copy number of hydA cDNA), whereas the biomass concentration profile also followed a similar trend to that of the hydA DNA copies.
    Copy numbers of the hydrogenase gene (hydA) and mRNA transcripts (cDNA hydA) (after amplification) as well as total DNA and RNA (before amplification) were measured over the course of the growth of strain CGS5. After amplification, the copy number of hydA increased 1000 folds during late exponential growth phase after normalization to the copy number at time 0, and cDNA from mRNA transcripts of hydA also increased 500 folds after normalization. The mRNA transcripts of hydA lagged behind the increase of total DNA and RNA, and increased in hydA more similar than those of total DNA. Increases in both of these parameters corresponded to hydrogen production. Transcripts of 16S ribosomal RNA reached a maximum value earlier (38 h) than did those of hydA (47 h). All molecular characteristics matched those for sucrose utilization, growth and hydrogen production. The experiment results indicated that transcription as measured by cDNA can be related to hydrogen production and possesses the potential to be used as tool for process control.
    Detection of hydA genes of Clostridia using designed primer sets for C. butyricum were optimized by the addition of bovine serum albumin (BSA) to PCR and qPCR reactions. A 100 ng/ l of BSA concentration which is lower than previously reported in the literature were found to be most effective on improving the detection limitation. The brightness of amplicons with 100 ng/ l BSA increased in ethidium bromide treated gels, the minimum detection limit with BSA was at least one log greater and cycle threshold (Ct) values were higher than those without BSA in qPCR, indicating improved detection of target DNA for most samples tested. Although amplicon visualization was improved at BSA concentrations ≥100 ng/l, gene copy numbers detected by qPCR were less, CT values increased and Tm values were altered. SYBR Green dissociation curves of qPCR products of DNA from pure culture or sludge samples showed that 100 ng/l of BSA reduced the variability of peak areas and Tm values.
    Finally, the reverse transcription and qPCR techniques were also applied to another bacterial system (Caldimonas taiwanensis On1T) possessing the ability to hydrolyze starch under a multi-amylase system. The results showed that the expression of a known amylase gene (Amy gene) seemed to match the trend of starch hydrolysis performance (or enzyme activity) during the fermentation time course. This indicated that the target amylase played a major role in starch hydrolysis activity of the Caldimonas taiwanensis On1T strain. The results also demonstrated the potential of using the proposed molecular biological techniques (i.e., combination of RT-PCR and qPCR) in monitoring the correlation between gene expression and biological function.

    Abstract (Chinese) Ⅰ Abstract (English) Ⅳ Acknowledgements Ⅶ Content Ⅷ List of Tables ⅩⅢ List of Figures ⅩⅥ Chapter 1 Introdction 1 1-1 Motivation and purpose 1 1-2 Construction of dissertation 4 Chapter 2 Background and literature review 8 2-1 Hydrogen production 8 2-1-1 Overview of hydrogen energy 8 2-1-2 Methods for hydrogen production 9 2-1-3 Biohydrogen production 10 2-1-4 Anaerobic dark fermentation metabolic pathways 11 2-2 Hydrogenase 13 2-2-1 Introduction of hydrogenase 13 2-2-2 Types of hydrogenase 13 2-2-3 Hydrogenase function mechanism 14 2-3 Gene expression 17 2-4 PCR inhibition 19 2-4-1 Introduction of PCR inhibition 19 2-4-2 Inhibitor types: known, unknown, and come from experimental process 19 2-4-3 Methods to relief PCR inhibition 22 2-4-4 BSA effect 25 2-8 Amylase 28 Chapter 3 Materials and Methods 31 3-1 Chemicals and commercial kits 31 3-1-1 Medium chemicals used for the culture of Clostridium butyricum CGS5 31 3-1-2 Chemicals used in nucleic acid extraction 31 3-1-3 Chemical materials for PCR experiments 32 3-1-4 Chemicals used in gel electrophoresis 33 3-1-5 The Commercial Kits 33 3-1-6 Others 34 3-2 Experimental equipments 35 3-2-1 PCR machines 35 3-2-2 Others 35 3-3 Bacterial sources and cultivation condition 37 3-3-1 Pure culture isolated from treated sludge 37 3-3-2 Environmental samples 38 3-3-3 Cultivated medium and condition for pure culture of C. butyricum CGS5 40 3-4 Nucleic acids extraction method 42 3-4-1 DNA extraction 43 3-4-2 RNA extraction 45 3-4-3 Other extraction reagents 46 3-5 DNA extraction methods 48 3-5-1 DNA extraction for pure culture by proteinase K with phenol-chloroform 48 3-5-2 DNA extraction for environmental bacteria developed from Yu et al. by using Zirconia/silica bead with phenol-chloroform 50 3-6 RNA extraction methods 52 3-6-1 RNA extraction was developed from Yu et al.1…………….52 3-7 Quantization of DNA and RNA with absorption and fluorescence spectroscopy 55 3-7-1 Absorbance spectroscopy 55 3-7-2 Determine the concentration of DNA 56 3-7-3 Fluorescence spectroscopy 57 3-8 Primer and probe sets designed method and applications 58 3-8-1 Primer and probe design strategy 58 3-8-2 Related primer and probe sets by aligning hydeogenase nucleotide sequences 59 3-8-3 Related primer and probe sets by aligning hydrogenase polypeptide sequences 60 3-8-4 16S rDNA primer and probe sets by aligning 16S rDNA sequence of Clostridia spp. 60 3-8-5 Other primer sets designed for different purposes 61 3-8-6 Primer and probe design of Caldimonase taiwanensis On1T 62 3-9 Polymerase chain reaction (PCR) 65 3-9-1 Basic PCR protocol 65 3-9-2 PCR Application 69 3-9-3 Quantitative PCR (Real time PCR) applications 72 3-9-4 Reverse transcription quantitative PCR (RT-qPCR) application 77 3-10 The PCR master mixture and PCR condition 79 3-10-1 Regular PCR assay 79 3-10-2 Temperature gradient PCR assay 79 3-10-3 SYBR Green PCR assay 80 3-10-4 Real time PCR assay 81 3-10-5 Reverse transcription PCR (RT-PCR) assay 82 3-11 Determinations of cell density, sugar and nucleic acid concentrations 83 3-12 Detection of biogas and soluble microbial products 85 3-13 Preparation of calibration curves of Quantitative PCR 88 Chapter 4 Decoding of hydrogenase gene sequence 92 4-1 Motivation 92 4-2 Experimental procedures 95 4-2-1 Design strategy of primer and probe sets 95 4-2-2 DNA template preparation 95 4-2-3 HG1 primer set in PCR with C. butyricum CGS2, C. butyricum CGS5, Rhodoseudomonas palustris WP3-5, and Klebsiella sp. 95 4-2-4 HG2 primer set in temperature gradient PCR with C. butyricum CGS2 and C. butyricum CGS5 96 4-2-5 Primer cross-link method 97 4-3 Experimental results 98 4-3-1 PCR results from using HG1 primer set and the temperature gradient PCR results from using HG2 primer set 98 4-3-2 Comparisons of the primer cross-link results 102 4-3-3 Comparison of the matched results with primer sets 113 4-4 Conclusions of the hydrogenase gene sequence decoding 114 Chapter 5 The effect of BSA on PCR performance 118 5-1 Motivation 118 5-2 Experiment procedures 121 5-2-1 DNA template preparation 121 5-2-2 Experiments investigating BSA effect and optimization of BSA concentration 121 5-2-3 The BSA effect on temperature gradient PCR using optimal BSA dosage 121 5-2-4 The BSA effect on SYBR Green PCR experiments by using HG5 with or without addition of 100 ng/μl of BSA 122 5-2-5 The BSA effect on SYBR Green PCR experiments by using BH primer set with or without addition of 100 ng/ μl of BSA 122 5-2-6 The BSA effect in real time PCR by using HG5 and BH primer sets with or without addition of 100 ng/ μl of BSA 123 5-2-7 The BSA effect in PCR and SYBR Green PCR with environmental samples by using BH primer set 123 5-3 Results and discussions 125 5-3-1 The effect of BSA on temperature gradient PCR with HG primer sets 125 5-3-2 The results of optimizing BSA concentrations 125 5-3-3 The effect of BSA on temperature gradient PCR with HG5 and BH primer sets 129 5-3-4 The effect of BSA on SYBR Green PCR with HG5 and BH primer sets 129 5-3-5 The effect of BSA on real time PCR with HG5 and BH primer sets 138 5-3-6 The effect of BSA on PCR with BH primer set for environmental samples 140 5-3-7 The effect of BSA on SYBR Green PCR with BH primer set for environmental samples 140 5-4 Conclusions of BSA effect 146 Chapter 6 Exploring correlation of biohydrogen production and hydrogenase expression using reverse transcription qPCR 147 6-1 Motivation 147 6-2 Experiment procedures 147 6-2-1 Strain source and fermentione condition 148 6-2-2 Quantification of cell density, sucrose, and nucleic acid 150 6-2-3 Detection of biogas and soluble microbial products 150 6-2-4 Primer and probe design 150 6-2-5 Total DNA and RNA extractions 151 6-2-6 Reverse transcript PCR 151 6-2-7 Quantitative PCR amplification 151 6-2-8 Model simulation to obtain kinetic constant for hydrogen production 151 6-2-9 Enzyme kinetics analysis 152 6-3 Results and discussions 155 6-3-1 Cell growth, substrate consumption, and H2 production 155 6-3-2 Comparision of profiles of total DNA and RNA versus sucrose consumption and hydrogen production 163 6-3-3 Quantification of DNA of hydrogenase gene (hydA) during H2 fermentation 165 6-3-4 Quantification of mRNA of hydrogenase gene (hydA) and 16S rDNA during H2 fermentation 169 6-3-5 hydA gene expression versus H2 production 177 6-4 Conclusions 182 Chapter 7 Exploring the correlation between starch hydrolysis and amylase gene expression 184 7-1 Motivation 184 7-2 Experiment procedures 186 7-2-1 Strain source and fermentable condition186 7-2-2 Quantification of bacterial cell, starch, reducing sugar, and nucleic acid 186 7-2-3 Total DNA and RNA extractions 187 7-2-4 Reverse transcript PCR 187 7-2-5 Quantitative PCR (qPCR) amplification 188 7-2-6 Kinetic data analysis of reducing sugar production by model simulation 188 7-2-7 Enzyme (amylase) activity assay 189 7-3 Results and discussions 191 7-3-1 Batch culture No. 1: Cell growth of Caldimnas taiwanensis On1T on starch containing and starch-free medium 191 7-3-2 Batch culture No. 2: Determination of starch hydrolysis profile for Caldimnas taiwanensis On1T 191 7-3-3 Batch culture No. 3: Monitoing starch hydrolysis activity via qPCR during batch growth of Caldimnas taiwanensis On1T 196 7-3-4 qPCR detection of amylase expression 200 7-4 Conclusions 204 Chapter 8 Conclusions 205 References 207 Curriculum vitae 229

    Abravaya K, Huff J, Marshall R. Molecular beacons as diagnostic tools: technology and applications. Clin Chem Lab Med, 41:4, 468-74, 2003
    Adams RLP, Knowler JK, Leader DP. The biochemistry of the nucleic acids, 10 th, Chapman and Hall, New Year, 1986
    Akane A. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci, 39, 362-72, 1994
    Albracht SPJ. Nickel hydrogenases:in search of the active site. Biochim Biophys Acta, 1188, 167-204, 1994
    Al-Soud WA and Rädström P. Effects of amplification facilitators on diagnostric PCR in the presence of Blood, feces, and meat. J Clin Microbiol, 34, 4463-70, 2000
    Al-Soud WA. Identification and characterization of imminogloulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol, 38, 345-50, 2000
    Al-Soud WA and Rädström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol, 39, 485-93, 2001
    Altschul SF, Madden TL, Schaffer AA, Zhang, J, Zheng Z, Miller W, Lipman DJ. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389-402, 1997
    Armstrong FA. Hydrogenases: active site puzzles and progress. Current opinion in Chemical Biology, 8, 133-40, 2004
    Auling G, Pilz F, Busse HJ, Karrasch S, Streichan M, Schön G. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl Environ Microbiol, 57, 3585-92, 1991
    Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG., Smith JA, Struhl K. Short protocol in molecular biology, 3rd edition. John Wiley & Sons, Inc., New York, 1997
    Bailey JE and Ollis DF. Biochemical engineering fundamentals, second ed. NewYeark: McGraw-Hill, 1986.
    Belanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG. Rapid detection of Clostridium difficile in feces by real time PCR. J Clin Microbiol, 41, 730-34, 2003
    Belec L. Myoglobin as a polymerase chain reaction (PCR) inhibitor: A limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermiphilus polymerase. Muscle Nerve, 21, 1064-7, 1998
    Bender H, Lehman J, Wallenfels K. Pullulan, einextracellulares glucan von Pullularia pullulans. Bioch Biophys Acta, 36, 309-16, 1959
    Benemann JR. Hydrogen biotechnology: progress and prospects. Nat Biotechnol, 14, 1101-3, 1996
    Bernfeld P. Amylase α- and β- methods. Enzymol, l, 149-58, 1955
    Bickley J. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol, 22, 153-8, 1996
    Binderup K and Preiss J. Glutamate-459 is important for Escherichia coli branching enzyme activity. Biotechmistry, 37, 9033-7, 1998
    Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol, 25:2, 169-93, 2000
    Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 29:1, 23-39, 2002
    Bustin SA. A to Z of Quantitative PCR. LaJolla, California: International University Line, 2004
    Cammack R. Hydrogenase sophistication. Nature, 397, 214-5, 1999
    Cammack R, Frey M, Robson R. Hydrogen as a fuel: Learning from nature. Taylor & Francis, London, p. 267, 2001
    Chandler DP, Wangnon CA, Bolton H. Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl Environ Microbiol, 64, 669-77, 1998
    Chang JJ, Chen WE, Shih SY, Yu SJ, Lay JJ, Wen FS, Huang CC. Molecular detection of the Clostridia in an anaerobic biohydrogen fermentation system by hydrogen mRNA-targeted reverse transcription PCR. Appl Microbiol Biotechnol, 70, 598-604, 2006
    Chang JJ, Chou CH, Hsu PC, Yu SJ, Chen WE, Lay JJ, Huang CC, Wen FS. Flow-Fish analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target. Appl Microbiol Biotechnol, 74:5, 1126-34, 2006
    Chang JS, Lee KS, P Lin J. Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy, 27, 1167-74, 2002
    Chang JS and Lee KS. Reply the comments on: Fermentation hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy, 31, 1799-801, 2006
    Chen BY and Janes HW. PCR cloning protocols. Second Edition. Humana Press, Totowa, New Jersey, 2002
    Chen CC, Lin CY, Chang JS. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol, 57, 56-64, 2001
    Chen, MW, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol, 51, 1729-35, 2001
    Chen SD, Sheu DS, Chen WM, Lo YC, Huang TI, Lin CY, Chang JS. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1T. Biotechnol Progress, 23, 1312-20, 2007
    Chen WM, JS Chang, CH Chiu, SC Chang, WC Chen, CM Jiang, Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Syst Appl Microbial, 28, 415-20, 2005
    Chen WM, Tseng ZJ, Lee KS, Chang JS. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy, 30, 1063-70, 2005
    Chiou CH. Caldimonas taiwanenesis sp. nov., an amylase producing bacterium isolated from a hot spring. Master thesis, 2005
    Chomczynski P and Sacchi N. Single- step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. 1987
    Chung Y C, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl Environ Microbiol, 61, 1502-1506, 1995
    Collet C, Gaudard O, Peringer P, Schwitzguebel JP. Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture-Effect of hydrogen partial pressure. J Biotechnol, 118, 328-338, 2005
    Corbella ME and Puyet A. Real-time reverse transcription PCR analysis of expression of halobenzoate salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa. Appl Environ Microbiol, 69, 2269-75, 2003
    Das D and Veziroglu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy, 26, 13-28, 2001
    De Boer SH, Ward LJ, Chittaranjanl S. Attenuation of PCR Inhibition in the presence of Plant compounds by the addition of BLOTTO. Nucleic Acids Res, 23, 2567-2568, 1995
    Demeke T and Adams RP. The effects of plant polysaccharides and buffer additives on PCR. Biotechniques, 12, 332-334, 1992
    Devers M, Soulas G, Martin-Lanurent F. Real-time PCR reverse transcription PCR analysis of expression of atazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods, 56, 3-15, 2004
    Diderichsen B and Christiansen L. Cloning of a maltogenic alpha-amylase from Bacillus stearothermophilus. FEMS Microbil Lett, 56, 53-60, 1988
    Dieffenbach CW and Dveksler GS. PCR primer: A laboratory manual. Cold spring Harbor Laboratory Press, New York, 2003
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem, 28, 350-356, 1956
    Eckhart L. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem Biophys Res Comm, 271, 726-30, 2000
    Erb RW and Wagner-Boyler I. Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol, 59, 4065-73, 1993
    Esteso MA, Estrella CN, Podestá JJ. Evaluation of the absorption on mild steel of hydrogen evolved in glucose fermentation by pure cultures of Clostridium acetobutylicum and Enterobacter. Sens Actuators B Chem, 332, 27-31, 1996
    Evvyernie D, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J Biosci Bioeng, 91, 339-43, 2001
    Fan YT, Li CL, Lay J-J, Hou HW, Zhang GS. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol, 91, 189-93, 2004
    Fang HH, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Micobiol Biotechnol, 58:1, 112-18, 2002
    Fang HHP, Zhang T, Li C. Characterization of Fe-hydrogenase gene diversity and hydrogen-producing population in an acidophilic sludge. J Biotechnol, 126, 357-364, 2006
    Farrell RE. RNA methodologies. Academic Press, San Diego, 1993
    Fascetti E, D’addario E, Todini O, Robertiello A. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy, 23, 753-60, 1998
    Ferchichi M, Crabbe E, Hintz W, Gil G-H, Almadidy A. Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol, 21, 855-862, 2005
    Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR pitfalls and potential. BioTechniques, 26, 112-25, 1999
    Frey M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem, 3, 153-60, 2002
    Foarty WM. Microbial amylases, In: MW Foarty (Ed.) Microbial enzymes and biotechnology, Applied Science, London, pp. 1-92, 1983
    Forbes BA and Hicks KE. Substances interfering with direct detection of Mycobacterium tuberculosis in clinical specimens by PCR: Effects of Bovine serum albumin. J Clin Microbiol, 34, 2125-8, 1996
    Fuhrman JA, Liang X, Noble RT. Rapid detection of enteroviruses in small volumes of natural waters by real-time quantitative reverse transcriptase PCR. Appl Environ Microbiol, 71, 4523-30, 2005
    Gelhaye E, Petitdemange H, Gay R. Adhesion and growth rat of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J Bacteriaol, 175, 3452-8, 1993
    Ginzinger DG. Gene Quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol, 30, 503-12, 2002
    Goerke C, Campana S, Bayer MG, Doring G, Botzenhart K, Wolz C. Direct quantitative transcript analysis of the agr-regulation of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect Immun, 68, 1304-11, 2000
    Gorwa MF, Croux C, Soucaille P. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol, 178:9, 2668-75, 1996
    Greenbaum E. Hydrogen production b photosynthetic water splitting. In:Veziroglu TN, Takashashi PK, editors. Hydrogen energy process VII. Proceedings 8th WHEC, Hawaii. Pergamon Press, New York, 743-754, 1990
    Gregory JB, Litaker RW, Noble RT. Rapid one-step quantitative reverse transcriptase PCR assay with competitive internal positive control for detection of enteroviruses in environmental samples. Appl Environ Microbiol, 72, 3960-67, 2006
    Hallenbeck PC and Benemann JR. Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy, 27, 1185-94, 2002
    Harms G, Layton AC, Dionisi HM, Gregory IM, Garrtt VM, Hawkins SA, Robinson KG, Sayler GS. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol, 37, 343-51, 2003
    Harris E. A low-cost approach to PCR. Oxford University Press, Oxford, 1998
    Haruhiko Y, Akio S, Hiroyuki U, Jun H, Sachio H, and Yoshiyuki T. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng, 91, 58-63, 2001
    Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res, 6:10, 986-94, 1996
    Herbert HTF and Hong L. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol, 8, 87-93, 2002
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10:4, 413-7, 1992
    Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 11:9, 1026-30, 1993
    Holben, WE, Jansson JK, Chelm BK, Tedje JM. DNA probe method for the detection of specific microorganisms in the soil bacteria community. Appl Environ Microbiol, 54, 703-711, 1988
    Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A, 88:16, 7276-80, 1991
    Hussy I, Hawkes FR, Dinsdale R, Hawkes DL. Continuous fermentation hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng, 84, 619-26, 2003
    Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). PCR protocols: A Guide to methods and applications. Academic Press, San Diego, California, 1990
    Israilides C, A Smith, B Scanlon, C Barnett. Pullulan from agro-industrial wastes. Biotechnol Genet Eng Rev, 16, 309-24, 1999
    Jacobsen CS and Rasmussen OF. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol, 58, 2458-62, 1992
    Jiang J, Alderisio KA, Singh A, Xiao L Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol, 71, 1135-41, 2005
    Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen A. An internal reference technique for accurately quantifying specific mRNA by real-time PCR with application to be the tceA rrductive dehalogenase gene. Appl Environ Microbiol, 71:7, 3866-71, 2005
    Johnson DW, Pieniazek NJ, Griffin DW, Misener L, Rose JB. Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl Environ Microbiol, 61, 3849-55, 1995
    Kainz P. The PCR plateau phase towards an understanding of its limitations. Biochem Biophys Acta, 1494, 23-27, 2000
    Kapdan IK and Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol, 38, 569-82, 2006
    Karube I, Urano N, Matsunaga T, Suzuki S. Hydrogen production from glucose by immobilized growing cells of Clostridium butyricum. Eur J Appl Microbiol, 16, 5-9, 1982
    Kataoka N, Miya A, Kiriyama K. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol, 36, 41-7, 1997
    Katcher HL and Schwartz I. A distinctive property of Tth DNA polyermase: Enzymatic amplification in the presence of phenol. BioTechniques, 16, 84-92, 1994
    Kiel JAKW, Boels JM, Beldman G, Venerma G. Molecular cloning and nucleotide sequence of glycogen branching enzyme gene (glg B) from Bacillus stearothermophilus and expression in Escherichia coli and Bacillus subtillus. Mol Gen Genet, 230, 136-368, 1991
    Kiel JAKW, JM Boels, G Beldman, G Venerma. The glg B gene from the thermophilic Bacillus caldolyticus encodes a thermostable branching enzyme. DNA Seq, 3, 221-232, 1992
    Kim CH. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J Dairy Sci, 84, 74-83, 2001
    Khan G. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J Clin Pathol, 44, 360-5, 1991
    Khanal SK, Chen W-H, Li L, Sung S. Biological hydrogen production: effect of pH and intermediate products. Int J Hydrogen Energy, 29, 1123-31, 2004
    Klein A, Barsuk R, Dagan S, Nusbaum O, Shouval D, Galun E. Comparison of methods nucleic acid from hemolytic serum for PCR amplification of hepatitis b virus DNA sequence. J Clin Microbiol, 35, 1897-9, 1997
    Koonjul PK, Brandt WF, Farrant JM, Lindsey GG. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res, 27, 915-16, 1999
    Krahn E, Schnerder K, Muller K. Comparative characterization of H2 production by the conventional nitrogenase and alternative "iron-only" nitrogenase of Rhodobater capsulate hap mutants. Appl Microbiol Biotechnol, 46, 285-90, 1996
    Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol, 62, 1102-06, 1996
    Kumar N and Das D. Enhancement of hydrogen production by Enterobacter cloacae
    IIT-BT 08. Process Biochem, 5, 589-94, 1999
    Kumar N and Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lingocellulosic materials as solid matrices. Enzyme Microbiol Technol, 29, 280-7, 2001
    Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol, 64, 2463-72, 1998
    Lantz PG. Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J Microbiol Met, 28, 159-67, 1997
    Lamer RT, Schoenike B, Vanden Wymelenberg A, Stewart P, Dietrich DM, Cullen D. Quantization of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol, 61, 2122-26, 1995
    Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng, 68, 269-87, 2000
    Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng, 74:4, 280-87, 2001
    Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett, 25, 113-38, 2003
    Lee KS, Wu JF, Lo YC, Lin PJ, Chang JS. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng, 87, 648-57, 2004
    Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res, 16, 3761-6, 1993
    Leff LG, Dana JR, McArthur JV, Shimkets LJ. Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol, 61, 1141-43, 1995
    Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy, 29, 173-85, 2004
    Li C, Zhang T, Fang HHP. Use of TaqMan gene probe for real-time monitoring of acidophilic hydrogen-producing bacteria. Biotechnol Lett, 29, 1753-5, 2007
    Lin CY and Lay CH. Effects of carbonate and phosphate concentration on hydrogen production using anaerobic sewage sludge microflora. Int Hydrogen Energy, 29, 275-81, 2004
    Liu ZP and Hu P. A density functional theory study on the active center of Fe-only hydrogenase: characterization and electronic structure of the rdox states. J Am Chem, 124, 5175-82, 2002
    Liu ZP and Hu P. Mechanism of H2 metabolism on Fe-only hydrogenases. J Chem Phys, 117, 8177-80, 2002
    Livak KJ, Flood SJ, Marmaro J Giusi W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl, 6, 357-62, 1995
    Loffert D. PCR: effects of template quantity. Qiagen, 1, 8-10, 1997
    Logan BE, Oh SE, Kim IS, Van Ginkel S. Biological hydrogen production measure in batch anaerobic respironmeters. Environ Sci Technol, 36, 2530-36, 2002
    Loge FJ, Thompson DE, Call DR. PCR detection of specific pathogens in water: a risk-bases analysis. Environ Sci Technol, 36, 2754-59, 2002
    Macdonald RM. Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific microorganisms from suspension by elutriation. Soil Biol Biochem, 18, 399-406, 1986
    Mahyudin AR, Furutani Y, Nakashimada Y, Kakizono T. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferm Bioeng, 83:4, 358-63, 1997
    McKeown BJ. An acetylsted (nuclease-free) bovine serum albumin in a PCR buffer inhibitors amplification. Biotechniques, 17, 246-48, 1994
    McPherson MJ, Moller SG, Beynon R, Howe C. PCR: Basics from background to bench. Springer-Verlag, Heidelberg, 2000
    McTavish H. Hydrogen evolution bt direct electron transfer from photosystem I to hydrogenases. J Biochem, 123, 644-49, 1998
    Methrel T, Hohl D, Rothnatinocyte JA, Longley MA, Bundman D, Cheng C, Lichti U, Bisher ME, Steven AC, Steinert PM. Identification of a major keratinocyte cell envelope protein. Ioricrin Cell, 6, 1103-23, 1990
    Mhlanga MM and Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 25:4, 463-71, 2001
    Miller DN, JE Bryant, EL Madsen, WC Ghiorse. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol, 65, 4715-24, 1999
    Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Biochem, 31, 426-28, 1959
    Mizuno O, Ohara T, Noike T. Hydrogen production from food processing waste by anaerobic bacteria. J Environ Syst Eng, 573, 111-18, 1997
    Monteiro L. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol, 35, 995-98, 1997
    Monis PT and Saint CP. Development of a nested-PCR assay for the detection of Cryptosporidium parvum in finished water. Wat Res, 35, 1641-8, 2001
    Monpoeho S, Dehee A, Mignotte B, Schwartzbrod L, Marechal V, Nicolas JC, Billaudel S, Ferre V. Quantification of enterovirus RNA in sludge samples using single tube real-time RT-PCR. Biotechniques, 29, 88-93, 2000
    Moran MA, Torsvik VL, Torsvik T, Hodson RE. Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol, 59, 915-18, 1993
    More, M. I., J. B. Herrick, M. C. Silva, W. C. Ghiorse, and E. L. Madsen. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol, 60, 1572-8, 1994
    Moreira D. Efficient removal of PCR inhibitors using agarose-embedded DNA preparations. Nucleic Acids Res, 26, 3309-10, 1998
    Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques, 24:6, 954-8, 960, 962, 1998
    Mu Y, HQ Yu, G Wang. A kinetic approach to anaerobic hydrogen-production process. Water Re, 41,1152-60, 2007
    Nakashomada Y, Rachman MA, Kakizono T, Nishio N. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrogen Energy, 27, 1399-405, 2002
    Nandi R and Sengupta S. Microbial production of hydrogen: an overview. Crit Rev Microbiol, 24, 61-84, 1998
    Nath K and Das D. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol, 65, 520-9, 2004
    Nielsen AT, Liu WT, Filipe C, Grady L, MolinS, Stahl DA. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol, 65, 1251-58, 1999
    Nocker A and Camper AK. Selective removal of DNA from dead cells of mixed bacterial communitied by use of ethidium monoazide. Appl Environ Microbiol, 72, 1997-2004, 2006
    Nocker A, Cheung C-Y, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentitation of lives vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods, 67, 310-20, 2006
    Noike T, Takabatake H, Mizuno O, Ohba M. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrogen Energy, 27, 1367-71, 2002
    O’Connell J. RT-PCR protocols. Humana Press, Totowa, Nwe Jersey, 2002
    Oh S-E, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol, 37, 5186-5190, 2003
    Ogram A, Sayler GS, Batkay T. The extraction and purification of microbial DNA from sediments. J Microbiol Meth, 7, 57-66, 1987
    Orgam A, Sun W, Brockman FJ, Fredrickson JK. Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl Environ Microbiol, 61, 763-8, 1995
    Oskar RZ. Biohydrogen. New York: Plenum Press, 1998
    Panaccio M and Lew A. PCR based diagnosis in the presence of 8% (v/v) blood. Nucleic Acids Res, 19, 1151, 1991
    Pandey A, Nigam P, Soccol CR, Socool VY, Singh D, Mohan R. Advances in microbial amylases. Biotechnol Appl Biochem, 31, 135-152, 2000
    Palazzi E, Fabiano B, Perego P. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng, 22, 205-13, 2000
    Park W, Hyun SH, Oh SE, Logan BE, Kim IS. Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol, 39, 4416-20, 2005
    Persson K, Hamby K, Ugozzoli LA. Four-color multiplex reverse transcription polymerase chain reaction-Overcoming its limitations. Anal Biochem, 344:1, 33-42, 2005
    Peter JW. Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol, 9, 670-6, 1999
    Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol, 58, 2717-22, 1992
    Powell, HA. Proteinase inhibition of the detection of in Listeria monocytogenes milk using the polymerase chain reaction. Lett Appl Microbiol, 18, 59-61, 1994
    Preiss J. Bacterial glycogen synthesis and its regulation. Ann Rev Microbiol, 38, 419-58, 1984
    Purdy KJ, Embley TM, Takii S, Nedwell DB. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl Environ Microbiol, 62, 3905-07, 1996
    Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N. Enhanced hydrogen production by Enterobacter aerogenes. J Fermen Bioeng, 83, 358-63, 1997
    Rädström P. Pre-PCR processing: Strategies to generate PCR-compatible samples. Mol Biotechnol, 26, 133-46, 2004
    Rao KK and Hall DO. Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol, 4, 10-15, 1996
    Rickert AM, Lehrach H, Sperling S. Multiplexed real-time PCR using universal reporters. Clin Chem, 50:9, 1680-3, 2004
    Rochelle PA, Fry JC, Parkes RJ. DNA extraction for 16S rRNA gene analysis to determine genetic diversity I deep sediment communities. FEMS Microbiol Letts, 100, 59-66, 1992
    Rochelle PA, Leon RD, Stewart MH, Wolfe RL. Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water. Appl Environ Microbiol, 63, 106-14, 1997
    Rossen L, Norskov P, Holmsstrom K, Rasmussen OF. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol, 17, 37-45, 1992
    Saha BK, Tian B, Bucy RP. Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe. J Virol Methods, 93:1-2, 33-42, 2001
    Sasikala C H, Ramana CV, Rao PR. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 20, 123-26, 1995
    Schnackenberg J, Schulz R, Senger H. Characterization and purification of a hydrogenase from eukaryotic green alga Scendesmus obliguus. FFB Lett, 327, 21-24, 1993
    Selenska S and Klingmuller W. Direct recovery and molecular analysis of DNA and RNA from soil. Microb Release, 1, 41-46, 1992
    Sharkey FH, Banat IM, Marchant R. Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol, 70, 3795-806, 2004
    Shields JM and Olson BH. PCR-restriction fragment length polymorphism method for detection of Cyclospora cayetanensis in environmental waters without microscopic confirmation. Appl Environ Microbiol, 69, 4662-69, 2003
    Shirasuna H, Fuhushima T, Matsushiqe K, Imai A, Ozaki N. Runoff and loads of nutrients and heavy metals from an urbanized area. Wat Sci Technol, 53, 203-13, 2006
    Shutler GG. Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stain from a five year old case. J Forensic Sci, 44, 623-26, 1999
    Singh A, Pandey KD, Dubey RS. Enhanced hydrogen production by coupled of Halobacterium halobium and chloroplast after entrapment within reverse micelles. Int J Hydrogen Energy, 24, 693-8, 1999
    Sluter SD, Tzipori S, Widmer G. Parameters affecting polymerase chain reaction detection of waterborne Cryptosporidium parvum oocysts. Appl Microbiol Biotechnol, 48, 325-30, 1997
    Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Elsas V. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol, 74, 78-85, 1993
    Solinas A, Brown LJ, McKeen C. Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res, 29:20, E96, 2001
    Stacy-Phipps S, Mecca JJ, Weiss JB. Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during course of infection. J Clin Microbiol, 33, 1054-9, 1995
    Steffan RJ, GoksoyrJ, Bej AK, Atlas RM. Recovery of DNA from soils and sediments. Appl Environ Microbiol, 54, 2908-15, 1988
    Stiner T, Matusan A, Hines K, Sandery M. Detection of a single viable Cryptosporidium parvum oocysts in environmental water concentrates by reverse transcription-PCR. Appl Environ Microbiol, 62, 3385-90, 1996
    Tan W, Wang K, Drake TJ. Molecular beacons. Curr Opin Chem Biol, 8:5, 547-53, 2004
    Tanisho S, Kuromoto M, Kadokura N. Effect of removal on hydrogen production by fermentation. Int J Hydrogen Energy, 23, 559-63, 1998
    Takaha T and SM Smith. The functions of 4-α-glucanotransferases and their use of the production of cyclic flucans. Biotechnol Genet Eng Rev, 16, 257-80, 1999
    Takata H, T Kurki, S Okada, Y Takesada, M Iizuka, T Imanaka. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1-4) and alpha-(1-6) glucosidic linkages. J Biol Chem, 267, 18447-52, 1992
    Takata H, T Kurki, S Okada, Y Takesada, M Iizuka, T Imanaka. Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus. Appl Environ Microbiol, 60, 3096-104, 1994
    Taveau M, Stockholm D, Spencer M, Richard I. Quantification of splice variants using molecular neacon or scorpion primer. Anal Biochem, 305, 227-35, 2002
    Tebbe CC and Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbol, 59, 2657-65, 1993
    Terry CF, Shanahan DJ, Ballam LD, Harris N, McDowell DG, Parkes HC. Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan, Scorpion, and SYBR Green I chemistries. J AOAC Int, 85:4, 938-44, 2002
    Too YJ, Hong J, Hatch RT. Comparison of  amylase activities from different assay methods. Biotechnol Bioeng, 30, 147-51, 1987
    Tougianidou D and Botzenhart K. Detection of enteroviral RNA sequences in different water samples. Wat Sci Tech, 27, 219-22, 1993
    Tsai YL, Park MJ, Olson BH. Rapid method for direct extraction of mRNA from seeded soil. Appl Environ Microbiol, 57, 765-8, 1991
    Tsai YL and Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol, 57, 1070-4, 1991
    Tsai YL and Olson BH. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol, 58, 754-7, 1992
    Tsai YL and Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol, 58, 2292-5, 1992
    Tsai YL and Rochelle PA. Environmental molecular microbiology: Protocols and Applications. Scientific Press, Wymondham, UK, p16-30, 2001
    Ueno Y, Haruta S, Ishii M, Igarashi Y. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbol Biotechnol, 57, 555-62, 2001
    Ueno Y, Otauka S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng, 82, 194-7, 1996
    Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechol, 94, 137-55, 2002
    Van Ginkel S, Sung S, Lay JJ. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol, 35, 4726-30, 2001
    Van Ginkel S and Logan BE. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol, 39, 9351-6, 2005
    Vandecasteele SJ, Peetermsns WE, Merckx R, Van Eldere J. Quantification of expression of Staphylococcus epidermids housekeeping genes with TaqMan quantitative PCR during in vitro growth under different conditions. J Bacteriol, 183, 7094-101, 2001
    Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Expression of biofilm-associated genes in Staphylococcus epidermids during in vitro and in vivo foreign body infection. J Infect Dis, 188, 730-37, 2003
    Vet JA and Marras SA. Design and optimization of molecular beacon real-time polymerase chain reaction assays. Methods Mol Biol, 288, 273-90, 2005
    Vet JA, Van der Rijt BJ, Blom HJ. Molecular beacons: colorful analysis of nucleic acids. Expert Rev Mol Diagn, 2:1, 77-86, 2002
    Volbeda A and Fontecilla-Camps JC. The active site and catalytic mechanism of NiFe hydrogenases. Dalton Trsnsactions, 4030-8, 2003
    Volossiouk T, Robb EJ, Nazar RN. Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol, 61, 3972-6, 1995
    Voordouw G. Evolution of hydrogenase genes. Adv Inorg Chem, 26, 397-410, 1992
    Vrettou C, Traeger-Synodinos J, Tzetis M, Palmer G, Sofocleous C, Kanavakis E. Real-time PCR for single-cell genotyping in sickle cell and thalassemia syndromes as a rapid, accurate, reliable, and widely applicable protocol for preimplantation genetic diagnosis. Hum Mutat, 23:5, 513-21, 2004
    Walia S, Khan A, Rosenthal N. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic contaminated soil environments. Appl Environ Microbiol, 56, 254-9, 1990
    Wang SX, Hunter W, Plant A. Isolation and purification of functional total RNA from woody branches and needles of Sitka and White Spruce. BioTechniques, 28, 292-6, 2000
    Wang MY, Olson BH, Chang JS. Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl Microbiol Biotechnol, 78:3, 525-32, 2008
    Watson RJ and Blackwell B. Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbial, 46, 633-42, 2000
    Weissensteiner T, Griffin HG, Griffin AM. PCR Technology: Current innovations. Second Edition. CRC Press, Boca Raton, Florida, 2003
    Weyant RS, Edmonds P, Swaminathan B. Effect of ionic and nonionic detergents on the Taq polymerase. Biotechniques, 9, 308-9, 1990
    Widmer G. Genetic heterogeneity and PCR detection of Cryptosporidium parvum. Adv Parasitol, 40, 223-39, 1998
    Wiedbrauk DL, Werner JC, Drevon AM. Inhibition of PCR by aqueous and vitreous fluids. J Clin Microbiol, 33, 2643-6, 1995
    Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol, 63, 3741-51, 1997
    Wilson K. Miniprep of bacterial genomic DNA. In: Ausubel F M, Brent R, Kingston R E, Moore D D, Seidan J G, Smith J A, Struhl K (eds.). Current protocols in molecular biology. John Wiley & Sons, Inc., New York, p.2.4.1-2.4.2, 1994
    Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22:1, 130-1, 134-8, 1997
    Woodward J, Mattingly SM, Danson M, Hough D, Ward N, Adams M. In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Nat Biotechnol, 14, 872-4, 1996
    Woodward J, Orr M, Cordray K, Greenbaum E. Enzymeatic production of biohydrogen. Nature, 405, 1014-15, 2000
    Wooshin P, Seung HH, Sang-Eun OH, Logan BE, Kim IS. Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol, 39, 4416-20, 2005
    Wrigley DM, Hanwlla HDSH, Thon BL. Acid exposure enhance sporulation of certain strains of Clostridium perfringens. Anaerobe, 1, 263-7, 1995
    Wu JF. Biohydrogen production using starch as the carbon substrate. Master thesis, 2006
    Wu SY, Hung CC, Lin CN, Chen HW, Lee AS, Chang JS. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng, 93, 934-46, 2005
    Wu SY, CN Lin, JS Chang. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bad biorectors. Biotechnol Bioeng, 87, 648-57, 2004
    Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from waste potato starch reside. J Biosci Bioeng, 91, 339-43, 2001
    Yokoi H, Maki R, Hirose J, Hayashi S. Microbial production of hydrogen from starch-manufacture wastes. Biomass Bioenergy, 22, 389-95, 2002
    Yoshii T. Water-soluble eumelanin as a PCR-inhibitor and a simple method for its removal. Nihon Hoigaku Zasshi, 47, 323-29, 1993
    Young CC, Burghoff RL, Keim LG, Minak-Bernero V, Lute JR, Hinton SM. Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplification DNA from soils. Appl Environ Microbiol, 59, 1972-4, 1993
    Yu Z and Mohn WW. Killing two birds with one stone: simultaneous extraction of DNA and RNA from activated sludge biomass. Can J Microbiol, 45, 269-72, 1999
    Zhang T and Fang HHP. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol, 70, 281-289, 2006
    Zhou J, Bruns MA, Tiedie JM. DNA recovery from soil of diverse composition. Appl Environ Microbiol, 62, 316-22, 1996
    Zwietering MH, I Jongenburger, FM Rimbouts, K Van’t Riet. Modeling of the bacterial growth curve. Appl Environ Microbiol, 56, 1857-81, 1990

    無法下載圖示 校內:2028-03-28公開
    校外:2028-03-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE