| 研究生: |
丁榮慶 Ting, Rong-Ching |
|---|---|
| 論文名稱: |
穩態及非穩態厭氣流體化床之生物膜剝落動力 Kinetics of Biofilm Detachment in Steady-State and Unsteady-State Anaerobic Fluidized-Bed Bioreactors |
| 指導教授: |
黃汝賢
Huang, Ju-Sheng 林達昌 Lin, Ta-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 模式 、膨脹床高度 、壓差 、非穩態 、穩態 、倒錐角度 、厭氣流體化床 、生物膜剝落速率 、剪功率 、氣/液/固相空隙率 、水動力學特性 |
| 外文關鍵詞: | steady state, anaerobic fluidized-bed, taper angle, pressure drop, gas-liquid-solid hold-up, expanded-bed height, model, biofilm detachment rate, shearing power, unsteady state, hydrodynamic characteristics |
| 相關次數: | 點閱:155 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用傳統與倒錐(倒錐角度= 5o)厭氣流體化床生物反應器(AFBBRs)並安裝壓差調控迴流量之儀控裝置,嘗試由操控床壓差之方式操作AFBBRs,俟每一組AFBBR達穩定狀態(steady state)後,除了測得出流水質(乙酸、COD及VSS)及生物膜特性參數(生物顆粒粒徑dp、生物膜厚δ及生物顆粒濕密度ρp)外,亦將穩態之操作條件、化學/生物參數及生物膜剝落速率(rd)代入涵蓋有比生物膜剝落速率與比生長速率之經驗式,以釐清傳統或倒錐AFBBRs對生物膜之生長較為有利。接著將傳統與倒錐AFBBRs調控不同床壓差(Pt)使液相表流速(ul)改變,並進行生物膜剝落之動態實驗,除了探討在不同ul下傳統與倒錐AFBBRs之水動力學特性(包含Pt及膨脹床高度Hb)與rd間之關係外,並以實驗數據驗證傳統與倒錐AFBBRs床總壓差及膨脹床高度模式之適用性。此外,本研究亦另安裝與上述相同槽規格之傳統與倒錐AFBBRs進行非穩態(unsteady state)操作(固定迴流量),並藉床壓差之量測以探討非穩態操作下AFBBRs之生物膜剝落情形及床膨脹情形,並釐清δ、Hb與Pt間之關係。
穩態之傳統與倒錐AFBBRs在體積負荷率(乙酸合成廢水) 3.0 ~ 12.1 g COD/L-day之操作條件下,皆隨著體積負荷率之倍數增加,生物產氣量(Qg)亦呈現倍數增加;在流體化床區下層之較上層者為小,惟下層之ρp則較上層者為大,顯示流體化床區之生物顆粒有分層現象;傳統AFBBR之比生物膜剝落速率(σ)較倒錐AFBBR者為大,且傳統AFBBR之與生物膜生長無關之剝落係數( bd = –2.16 )及與生長速率有關之剝落係數( bd' =1.66 )皆較倒錐AFBBR者( bd = –5.95;bd' =1.57 )為大,意謂著倒錐AFBBR對生物膜之生長較傳統者有利。事實上,本研究在相同體積負荷率下,倒錐AFBBR之生物膜厚度及生物質量皆較傳統AFBBR者為大。
穩態之傳統與倒錐AFBBRs,在藉床壓差調控不同ul ( = 1.0 ~ 3.7 cm/s)之生物膜剝落動態實驗中,Hb與rd二者皆隨著ul之增加而增加。在傳統AFBBR中,Pt隨ul之增加而微幅增加,但在倒錐AFBBR中,Pt隨ul之增加而明顯降低;不同ul下造成之生物膜表面剪功率(ω)介於0.60 ~ 2.24 μW/cm2,在該ω範圍內,傳統與倒錐AFBBRs之σ皆與ω呈正相關,且在相同之ω下,傳統AFBBR之σ較倒錐AFBBR者為大。將傳統與倒錐AFBBRs之穩態操作及生物膜剝落動態實驗之ul、Qg等物理操作條件及實驗數據,依氣/液/固空隙率模式可求得三相之空隙率(g 、l及 p)。傳統與倒錐AFBBRs之l皆隨ul之增加而增大,p皆隨ul之增加而減小,g則隨ul之增加而差異不大。傳統與倒錐AFBBRs之床壓差(Pt)和床膨脹高度(Hb)之模式模擬值與實驗值之偏差介於(+28%) ~ (–15%)間。
非穩態之傳統與倒錐AFBBRs在體積負荷率(乙酸合成廢水) 6.1 g COD/L-day (固定迴流量)下操作,於連續操作55天後傳統與倒錐AFBBRs兩者之COD去除率即達90%,Qg隨COD去除率之增加而增加;COD去除率及Qg在非穩操作之最初期即達穩定,但AFBBRs內之生物質量則是在操作後期趨於穩定。隨著活性碳擔體附著生物量之增加,rd逐漸增加,當AFBBRs內生物質量趨於穩定時,rd即變化不大,惟傳統AFBBR之rd較倒錐AFBBR者為大;隨著擔體附著生物膜厚度之增加,生物顆粒之比重隨之變小,Hb和Pt皆隨之增加,顯示δ、Hb皆與Pt呈正相關。
Both conventional (taper angle = 0o) and tapered (= 5o) anaerobic fluidized-bed bioreactors (AFBBRs) used in this work were equipped with pressure transmitters and automated devices to control recycle-flow rate. When the two AFBBRs (with this operating mode) reached steady state, effluent quality (acetate, COD, and VSS) and bioparticle characteristic parameters (bioparticle diameter dp, biofilm thickness , and wet density of bioparticle p) were determined. Additionally, by inserting operational conditions, chemical and biological parameter values, and biofilm detachment rate (rd) into an empirical equation incorporating specific biofilm detachment rate (σ) and specific growth rate (μ), one can determine whether the tapered AFBBR is superior to the conventional AFBBR for effective attached-growth of biofilm or not. Thereafter, by varying different pressure drops (ΔPt) in the two AFBBRs to incur the changes of ul, dynamic biofilm detachment experiments were conducted. The experiments aimed to determine the relationship between the hydrodynamic characteristics (ΔPt and expanded-bed height Hb) and rd in the two AFBBRs operated at different ul. Meanwhile, the proposed pressure-drop and expanded-bed height models were also validated by these experimental results. Moreover, another conventional and tapered ( = 5o) AFBBRs with the same dimensions as the previous two AFBBRs were used and operated at a designated recycle-flow rate to proceed with the unsteady state study. This study aimed to correlate ΔPt with and Hb in the two AFBBRs.
In the steady-state conventional and tapered AFBBRs with volumetric loading rates (VLRs) of 3.0 – 12.1 g COD/L-day, the biogas production rate (Qg) increased doubly with a double increase in VLR. The in the lower-part of the fluidized-bed zone was thinner than that of the upper-part, whereas the p in the lower-part of the fluidized-bed zone was larger than that of the upper-part. This implied that bioparticles’ stratification occurred in the two steady-state AFBBRs. In addition, the specific biofilm detachment rate (σ) of the conventional AFBBR was greater than that of the tapered AFBBR; both the non-growth-associated detachment coefficient (bd = –2.16) and the growth-associated detachment coefficient (bd' = 1.66) of the conventional AFBBR were larger than bd (= –5.95) and bd' (= 1.57) of the tapered AFBBR. This implied that the tapered AFBBR was superior to the conventional AFBBR for biofilm growth. In fact, at the same VLR in this study, δ and biomass in the tapered AFBBR were larger those of the conventional AFBBR.
From the dynamic biofilm detachment experiments (using steady-sate conventional and tapered AFBBRs), Hb and rd increased with an increase in ul (=1.0-3.7 cm/s). In the conventional AFBBR, ∆Pt increased slightly with increasing ul, whereas ∆Pt declined markedly with increasing ul. At ul ranging from 1.0 to 3.7 cm/s, the calculated shearing power on the biofilm (ω) were 0.60-2.24 μW/cm2. Within this range, σ of the two AFBBRs positively correlated with ω. At the same ω, the σ of the conventional AFBBR was larger than that of the tapered AFBBR. By placing physical operating conditions and experimental results (ul, Qg, etc.) of the two steady-state AFBBRs and dynamic biofilm detachment experiments into the gas-liquid-solid hold-up model, the hold-up of gas, liquid, and solid (εg, εl, and εp) can be calculated. With an increase in ul, εl increased, εp decreased, and εg changed slightly. The simulated ∆Pt and Hb were (+28%)-(–15%) deviated from the experimental results.
In the unsteady-state conventional and tapered AFBBRs with a VLR of 6.1 g COD/L-day (a designate recycle-flow rate), the COD removal efficiencies reached 90% at the 55-th operating day and, meanwhile, Qg increased with an increase in COD removal efficiency. During the unsteady-state operation period, the COD removal efficiency and Qg reached stable level at the early stage, whereas biofilm/biomass reached stable level at the final stage. In addition, rd gradually increased with increasing amount of biomass (attached onto activated carbon). When biomass in the conventional and tapered AFBBRs reached stable level, rd changed slightly but rd of the former was larger than that of the latter. With an increase in δ, the specific gravity of bioparticle decreased and Hb and ∆Pt increased, indicating that ∆Pt was positively correlated with δ and Hb .
吳春生 (1995) 厭氣流體化床代謝產氣對壓差之影響效應,行政院國家科學委員會專題計畫報告。
陳重男、黃士峰、黃義能 (1992) 厭氣流體化床中生物擔體特性研究。第十七屆廢水處理技術研討會論文集,pp. 275-277。
Andrews, G. F. (1982) Fluidized-bed fermenters: A steady-
state analysis. Biotechnol. Bioeng. 24 (9), 2013-2030.
Adrews, G. F., Tien, C. (1981) Bacterial film growth in adsorbent surfaces. J. Am. Inst. Chem. Eng. 27 (3), 396-403.
APHA AWWA, WEF. (1998) Standard methods for the examination of water and wastewater. 20th ed., American Public Health Association, Washington, DC.
Baker, C. G. J., Kim, S. D., Gerougnou, M. A. (1977) Wake characteristics of three-phase fluidized beds. Powder Technol. 18 (2), 201-207.
Bakke, R., Characklis, W. G., Turakhia, M. H. (1990) Modeling a monopopulation biofilm system: Pseudomonas aeruginosa. In: Characklis, W. G. and Marshall, K. C., Biofilms. pp. 487-520. Wiley, New York.
Bhatia, V. K., Epstein, N. (1974) Three phase fluidization: A generalized wake model. In Proceedings of the International Symp. Fluid. Appli., pp. 380-392. Cepadues editions, Toulouse.
Boening, P. H., Larsen, V. F. (1982) Anaerobic Fluidized bed whey treatment. Biotechnol. Bioeng. 24 (11), 2539-2556.
Briens, L. A., Briens, C. L., Margaritis, A., Hay, J. (1997) Minimum liquid fluidization velocity in gas-liquid-solid fluidized beds. J. Am. Inst. Chem. Eng. 43 (5), 1180-1189.
Chang, H. T., Rittmann, B. E., Amar, D., Heim, R., Ehlinger, O., Lesty, Y. (1991) Biofilm detachment mechanisms in a liquid-fluidized bed. Biotechnol. Bioeng. 38 (5), 499-506.
Chang, H. T., Rittmann, B. E. (1994) Predicting bed dynamics in three-phase fluidized-bed biofilm reactors. Water Sci. Technol. 29 (10-11), 231-241.
Characklis, W. G. (1989) Biofilm process. In Biofilms (Edited by Characklis W. G. and Marshall K. C.), Wiley, New York.
Chern, S. H., Fan, L.S., Muroyama, K. (1984) Hydrodynamics of concurrent gas-liquid-soild semifluidization with a liquid as the continuous phase. J. Am. Inst. Chem. Eng. 30 (2), 288-294.
Converti, A., Borghi, M. D., Ferraiolo, G. (1993) Influence of organic loading rate on the anaerobic treatment of high strength semisynthetic wastewaters in a biological
fluidized bed. J. Chem. Eng. 52, B21-B28.
Cooper, P. F., Wheeldon, H. V. (1980) Fluidized- and expanded-bed reactors for wastewater treatment. Water Pollut. Control. 79 (2), 286-306.
Darton R. C., Harrison, D (1975) Gas and liquid hold-up in three-phase fluidization. Chem. Eng. Sci. 30, 581-586.
Denac, M., Dunn, I. J. (1988) Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment. Biotechnol. Bioeng. 32, 159-173.
Diez, B. V., Garcia, E. P. A., Fdz-Polanco, F. (1995) Effects of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (AFBBR). Water Res. 29 (7), 1649-1654.
Efremov, G. I., Vakhrushev, I. A. (1970) A study of the hydrodynamics of three-phase fluidized beds. Int. Chem. Engng. 10, 37-41.
El-Temtamy, S. A., Epstein, N. (1978) Bubble wake solids content in three-phase fluidized beds. Int. J. Multiphase Flow 4 (1), 19-31.
Ermakova, A., Ziganshin, G.K., Slin´ko, M. G. (1970) Hydrodynamics of a gas-liquid reactor with a fluidized bed of solid matter, Theor. Foud. Chem. Eng. 4, 84.
Fan, L. S., Chern, S. H., Muroyama, K. (1984) Solids mixing in a gas-liquid-solid fluidized bed containing a binary mixture of particles. J. Am. Inst. Chem. Eng. 30 (2), 854-860.
Foscolo, P. U., Gibilaro, L. G. (1987) Fluid dynamic stability of fluidized suspensions: The particle bed model. Chem. Eng. Sci. 42 (6), 1489-1500.
Huang, J. S., Wu, C. S. (1996) Specific energy dissipation rate for fluidized-bed bioreactors. Biotechnol. Bioeng. 50 (6), 643-654.
Huang, J. S, Yan, J. L., Wu, C. S. (2000) Comparative bioparticle and hydrodynamic characteristics of conventional and tapered anaerobic fluidized-bed bioreactors. J. Chem. Technol. Biotechnol.75 (4), 269- 278.
Iza, J. (1991) Fluidized bed reactors for anaerobic wastewater treatment. Water Sci. Technol. 24, 109-132.
Iza, J., Keenan, P. J., Switzenbaum, M. S. (1992) Anaerobic treatment of municipal solid waste landfill leachate: Operation of a pilot scale hybrid UASB/AF reactor. Water Sci. Technol. 25 (7), 255-264.
Jansen, J., Kristensen, G. H. (1980) Fixed film kinetics: Denitrification in fixed films, Report 80-59, Department of Sanitary Engineering, Technical University of Denmark.
Jean, R. H. Ph. D. Dissertation (1988), The Ohio State University.
Kampmeier, D. (1983) Total carbohydrate as an estimation of biomass in expanded-bed anaerobic filters. Personal communications were quoted by Wang, T. T. (1984) Modeling of biological activity in expanded-bed, anaerobic activated carbon filters. Ph. D. dissertation, Univ. of Illionis, Urbana-Champaign, IL, US.A.
Khan, A. R., Richardson, J. F. (1987) The resistance to motion of a solid sphere in a fluid. Chem. Eng. Commun. 62 (1-6), 135-150.
Khan, A. R., Richardson, J. F. (1989) Fluid-particle interactions and flow characteristics of fluidized bads and settling suspensions of spherical particles. Chem. Eng. Commun. 78, 111-130.
Kurt, M., Dunn, I. J., Bourne, J. R. (1987) Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol. Bioeng. 29 (4), 493-501.
Lindfield G., Penny, J. (2001) Numerical methods using Matlab, 2nd ed. Prentice Hall, New Jersey.
Lowe, M. J., Duddridge, J. E., Pritchard, A. M., Bott, T. R. (1984) Biological-particulate fouling interactions: Effects of suspended particles on biofilms development. In Proc. First National UK Heat Transfer Conference, Leads, 391-400.
Marin, P., Alkalay, D., Guerrero, L.(1999) Design and start-up of an anaerobic fluidized bed reactor. Water Sci. Technol. 40 (8), 63-70.
Muroyama, K., Hashimoto, K., Kawabata, T., Shiota, M. (1978) Axial liquid mixing in three-phase fluidized beds. Kagaku Kogaku Ronbunshu. 4, 622-630.
Nacef, S. (1991) Hydrodynamique des Lits Fluidises gas-liquide-soilde, Effect du distributeur et de la nature,” Ph.D. Thesis, Institut National Polytechniques de Lorraine, Ecole Nationale Seperieure des Industries Chimiques de Nancy, France.
Nakhla, G., Suidan, M. T.(2002) Determination of biomass detachment rate coefficients in anaerobic fluidized bed GAC reactors. Biotechnol. Bioeng. 80(6), 660-669.
Nelson, T. B., Skaates, J. M. (1988) Attrition in a liquid fluidized bed bioreactor. Ind. Eng. Chem. Res. 27 (8), 1502-1505.
Nicolella, C., Felice, D. R., Rovatti, M. (1996) An experimental model of biofilm detachment in liquid fluidized bed biological reactor. Biotechnol. Bioeng. 51, 713-719.
Nicolella, C., Felice, D. R., Rovatti, M. (1997) Mechanisms of biofilm detachment in fluidized bed reactor. Water Sci. Technol. 36 (1), 229-235.
Ozturk, I., Anderson, G. K., Saw, C. B. (1989) Anaerobic fluidized-bed treatment of brewery wastes and bioenergy recovery. Water Sci. Technol. 21 (12), 1681-1684.
Peng, Y., Fan, L. T. (1997) Hydrodynamic characteristics of fluidization in liquid-solid tapered beds. Chem. Eng. Sci. 52 (14), 2277-2290.
Peyton, B. M., Characklis, W. G. (1993) A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol. Bioeng. 41 (7), 728-735.
Pitt, W. W., Hancher, C. W., Hsu, H. W. (1978) The tapered fluidized bed bioreactor: An improved device for continuous cultivation. Am. Inst. Chem. Eng. Symp. Ser. 74, 119-123.
Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1989) Numerical recipes (FORTRAN). Cambridge University Press, London.
Rao, B. S. M., See, T. T. (1992) Shear loss characteristics of an aerobic biofilm. Water Sci. Technol. 26(3-4), 595-600.
Richardson, J. F., Zaki, W. N. (1954) Sedimentation and fluidization. Part 1. Trans. Inst. Chem. Eng. 32, 35-53.
Rittmann, B. E. (1982) The effect of shear stress on loss rate. Biotechnol. Bioeng. 24 (2), 501-506.
Ro, K. S., Neethling, J. B. (1990) Terminal settling characteristics of bioparticles. J. Water Pollut. Control Fed. 62 (7), 901-906.
Robinson, J. A., Trulear, M. G., Characklis, W. G. (1984) Cellular reproduction and extracellular polymer formation by pseudomonas aeruginosa in continuous culture. Biotechnol. Bioeng. 25, 1409.
Salkinoja-Salonen, M. S., Nyns, E. J., Sutton, P. M., Berg, L., Wheatley, A. D. (1983) Starting-up of an anaerobic fixed-film reactor. Water Sci. Technol. 15 (8-9), 305-308.
Sanz, I., Fdz-Polanco, F. (1990) Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors. Water Res. 24 (4), 463-469.
Scott, C. D., Hancher, C. W. (1976) Use of a tapered fluidized bed as a continuous bioreactor. Biotechnol. Bioeng. 18, 1393-1403.
Setiadi, T. (1995) Predicting the bed expansion of an anoxic fluidized-bed bioreactor. Water Sci. Technol. 31 (7), 181-191.
Shieh, W. K., Sutton, P. M., Kos, P. (1981) Predicting reactor biomass concentration in a fluidized-bed system. J. Water Pollut. Control. Fed. 53 (11), 1574-1584.
Shieh, W. K., Hsu, Y. (1993) Startup of anaerobic fluidized bed reactors with acetic acid as the substrate. Biotechnol. Bioeng. 41, 347-353.
Shieh, W. K., Hsu, Y. (1996) Biomass loss from an anaerobic fluidized bed reactor. Water Res. 30 (5), 1253-1257.
Speece, R. E. (1996) Anaerobic biotechnology for industrial wastewaters. pp. 35-40 Archae Press, Nashville, Tenn.
Speitel, G. E., DiGiano, F. A. (1987) Biofilm shearing under dynamic conditions. J. Environ. Eng. (ASCE) 113, 464-475.
Stathis, T. C. (1980) Fluidized bed for biological wastewater treatment. J. Environ. Eng. (ASCE) 106, 227-241.
Stewart, P. S. (1993) A model of biofilm detachment. Biotechnol. Bioeng. 41 (1), 111-117.
Sutherland, J. P., Wong, K. Y. (1964) Some segregation effects in packed-fluidized beds. The Canadian J. of Chem. Eng. 8, 163-167.
Tijhuis, L., van Loosdrecht, M.C.M. (1995) Dynamics of
biofilm detachment in biofilm airlift suspension reactors. Biotechnol. Bioeng. 45, 481-487.
Trulear, M. G., Characklis, W. G. (1982) Dynamics of biofilm process. J. Water Poll. Control Fed. 54, 1288-1301.
Tseng, S. K., Lin, M. R. (1990) Treatment of monosodium glutamate fermentation wastewater with anaerobic biological fluidized bed process. Water Sci. Technol. 22 (9), 149-155.
Webster, G. H., Perona, J. J. (1988) Liquid mixing in a tapered fluidized bed. J. Am. Inst. Chem. Eng. 34 (8), 1398-1402.
Wen, C. Y., Yu, Y. H. (1966) Mechanics of fluidization. Chem. Eng. Prog. Symp. 62, 100-111.
Wilhelm, R. H., Kwauk, M. (1948) Fluidization of solid particles. Chem. Eng. Prog. 44 (3), 201-219.
Wu, C. S., Huang, J. S. (1994) Expansion characteristics of tapered fluidized-bed bioreactors, In: Advances in Bioprocess Engineering, by E. Galindo and T. Ramirez, Kluwer Academic Publishers, Netherlands, 355-363.
Wu, C. S., Huang, J. S. (1996) Performance enhancement with tapered anaerobic fluidized-bed bioreactors. J. Chem. Technol. Biotechnol. 63 (4), 353-360.
Wu, C. S., Huang, J. S., Yan, J. L., Jih, C. G. (1999) Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioeng. 57 (3), 367-379.
Yu, H., Rittmann, B. E. (1997) Predicting bed expansion and phase holdups for three-phase fluidized-bed reators with and without biofilm. Water Res. 31, 2604-2616.