簡易檢索 / 詳目顯示

研究生: 張致瑄
Chang, Chih-Hsuan
論文名稱: 金銀及其合金組成之三維殼核奈米柱的表面電漿共振模態
Plasmonic Resonant Modes of 3D Rod-in-Shell Nanostructures with Gold/Silver and Alloys
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 奈米金柱殼核奈米金屬柱表面電漿共振模態混成模型
外文關鍵詞: Au NRs, Rod-in-shell, Surface plasmons, Resonant mode, Hybridization model
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要探討殼核奈米金屬柱之表面電漿共振模態,並以混成模型理論(Hybridization model)來解釋之。將原本之單一奈米金屬球製做成殼核結構後,其光學響應會和原先之單一粒子有所不同,產生如吸收頻譜的增強,共振波長的紅移、藍移等現象。在分析上我們將複雜奈米金屬結構分割成許多較為簡單之基本形狀,並逐一探討不同模態的電漿子能量高低,最後再探討各個基本結構之模態耦合結果。
      首先由最基本的單一奈米金屬結構開始,使用有限差分時域法(Finite-Difference-Time-domain method, FDTD Method)模擬金/銀材質比對奈米金屬球之影響、奈米球與奈米柱之差異,最後探討將奈米柱加上一層金屬外殼後之殼核奈米金屬柱結構。為了瞭解殼核奈米金屬柱之模態組成,我們將之分成中心柱狀部分、外殼以及在其間的間隙來探討,逐一釐清所具有的共振模態及原理。
      最後我們成功地運用混成模型理論將奈米柱、外殼以及間隙所具有之模態耦合成殼核奈米結構下所具有之模態,並且解釋了各種不同模態間之電漿子能量高低。以上之研究與討論也為將來設計殼核奈米粒子產生共振效果帶來新的觀點及研究方向。

    Recently, a new type of plasmonic metallic rod-in-shell nanostructure has been reported, which has greater localized surface plasmon resonant (LSPR) strength than Au NRs. However, the optical property of a single rod-in-shell nanoparticle is rarely been studied. Here, we use Finite-Difference Time-Domain (FDTD) method to study the plasmonic resonance mode of rod-in-shell structure and use the hybridization model to understand the physical mechanism. In our analysis, the structure of Au NR-in-Au-shell is divided it into three basic elements, Au NR, Au shell and the gap between rod and shell, and investigated separately. The resonant mode of Au NR-in-Au shell can be traced back to the energy level of plasmon resonant mode of each basic element. The effect of shell thickness and gap size lead to different surface plasmon coupling strength and different overall structure aspect ratio which all contribute to the spectra shift. Subsequently, we used hybridization theory to explain the energy level of Au NR-in-Au shell. The result shown in this thesis could provide a new perspective on the design of resonant mode of rod-in-shell nanostructures for bio-medical applications.

    口試委員審定書 i 誌謝 ii 摘要 iii Abstrate iv 目錄 x 圖目錄 xii 第一章 緒論 - 1 - 1.1 金屬奈米粒子之發展概況 - 1 - 1.2 研究動機 - 5 - 1.3 本文內容 - 6 - 第二章 奈米粒子基本理論介紹 - 7 - 2.1 金屬表面電漿子 - 7 - 2.1.1 表面消散波 - 8 - 2.1.2 垂直極化入射波與水平極化入射波 - 12 - 2.1.3 金屬奈米粒子之表面電漿共振 - 15 - 2.2 混成模型(Hybridization model)理論 - 19 - 第三章 有限差分時域法 - 23 - 3.1 有限差分時域法簡介 - 23 - 3.2 基本架構 - 24 - 3.2.1 Yee grid - 24 - 3.2.2 有限差分法 - 24 - 3.2.3 馬克士威爾方程式 - 25 - 3.2.4 完美匹配層 - 30 - 3.2.5 金屬的特魯德模型(Drude model) - 36 - 3.3 模擬空間設置 - 40 - 3.3.1 二維FDTD模擬設置 - 40 - 3.3.2 三維FDTD模擬設置 - 42 - 第四章 結果與分析 - 43 - 4.1 材質與長度對單一奈米金屬球之影響 - 44 - 4.1.1 材質的影響 - 44 - 4.1.2 長度的影響 - 47 - 4.2 殼核奈米金屬柱之光學響應 - 55 - 4.2.1 材質的影響 - 55 - 4.2.2 殼核結構的影響 - 56 - 第五章 結論與未來展望 - 73 - 5.1 結論 - 73 - 5.2 未來展望 - 74 - 參考文獻 - 75 -

    1. K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C.-T. Hsieh, C.-K. Sun, and C.-S. Yeh, "Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures," Journal of the American Chemical Society 131, 14186-14187 (2009).
    2. D. J. Barber, and I. C. Freestone, "An investigation of the origin of the color of the lycurgus cup by analytical transmission electron-microscopy," Archaeometry 32, 33-45 (1990).
    3. L. B. Hunt, "The true story of purple of cassius," Gold Bull 9, 134-139 (1976).
    4. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, "Bright and stable core-shell fluorescent silica nanoparticles," Nano Letters 5, 113-117 (2005).
    5. S. Link, and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B 103, 4212-4217 (1999).
    6. X. Huang, and M. A. El-Sayed, "Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy," Journal of Advanced Research 1, 13-28 (2010).
    7. H. Wang, X. Qiao, J. Chen, and S. Ding, "Preparation of silver nanoparticles by chemical reduction method," Colloids and Surfaces A: Physicochemical and Engineering Aspects 256, 111-115 (2005).
    8. Y.-H. Chen, and C.-S. Yeh, "Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects 197, 133-139 (2002).
    9. A. A. Ponce, and K. J. Klabunde, "Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis," Journal of Molecular Catalysis A: Chemical 225, 1-6 (2005).
    10. S. W. Prescott, and P. Mulvaney, "Gold nanorod extinction spectra," Journal of Applied Physics 99, - (2006).
    11. H. Raether, "Surface-plasmons on smooth and rough surfaces and on gratings," Springer Tracts in Modern Physics 111, 1-133 (1988).
    12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced raman scattering (sers)," Physical Review Letters 78, 1667-1670 (1997).
    13. Y. Chu, M. G. Banaee, and K. B. Crozier, "Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies," ACS Nano 4, 2804-2810 (2010).
    14. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non diffraction-limited light transport by gold nanowires," Europhysics Letters 60, 663-669 (2002).
    15. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat Mater 2, 229-232 (2003).
    16. D. K. Gramotnev, and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat Photon 4, 83-91 (2010).
    17. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports 408, 131-314 (2005).
    18. K. A. Willets, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual Review of Physical Chemistry 58, 267-297 (2007).
    19. A. Ono, J.-i. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Physical Review Letters 95, 267407 (2005).
    20. M. Quinten, and U. Kreibig, "Optical properties of aggregates of small metal particles," Surface Science 172, 557-577 (1986).
    21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    22. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Letters 4, 899-903 (2004).
    23. P. Nordlander, and E. Prodan, "Plasmon hybridization in nanoparticles near metallic surfaces," Nano Letters 4, 2209-2213 (2004).
    24. K. S. Yee, "Numerical solution of initial boindary value problems invilving maxwells equations in isotropic media," Ieee Transactions on Antennas and Propagation AP14, 302-& (1966).
    25. A. Taflove, S. C. Hagness, and M. Piket-May, "Computational electromagnetics: the finite-difference time-domain method," in The Electrical Engineering Handbook, W.-K. Chen, ed. (Academic Press, Burlington, 2005), pp. 629-670.
    26. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," Electromagnetic Compatibility, IEEE Transactions on EMC-23, 377-382 (1981).
    27. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics 114, 185-200 (1994).
    28. P. Drude, "On the electron theory of metals," Annalen Der Physik 1, 566-613 (1900).
    29. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE