| 研究生: |
黃紹筑 Huang, Shao-Chu |
|---|---|
| 論文名稱: |
整合BIM工具的感應式節能立面設計流程 A BIM Workflow for Responsive Energy-Efficient Facade |
| 指導教授: |
鄭泰昇
Jeng, Tay-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 感應式立面 、建築資訊模型 、節能整合設計流程 |
| 外文關鍵詞: | Responsive Façade, BIM, Intergrated Energy-Efficient Design Workflow |
| 相關次數: | 點閱:126 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在以節能為導向的設計議題中,「環境感應式立面(Responsive Façade )」是近年來用於以建築立面解決節能目標的設計手法之一。國際能源署(IEA)從2004年即開始針對先進整合立面AIF (Advanced Integrated Facades)、雙層牆立面DSF (Double Skin Façades)和感應式立面RF (Responsive Façade)等進行研究,其中感應式立面提供了立面元件在熱傳、採光和隔熱最佳化等細部組合性和具有彈性的可調整性。在性能為導向的設計方法中,建築資訊模型(BIM)的概念輔助了能源模型的建置,加快了性能模擬的分析結果,但既有的BIM模擬工具多用於概念設計作為修正量體或建築座向的參考,較少針對單一空間的整合單元立面比較結果。隨著數位製造技術進步,感應式立面比一般建築立面更強調虛擬(virtual)模型與實體(physical)模型的資訊交換,而實體模型包含的動態構件測試更可作為設計的溝通工具。
從文獻回顧和當地案例的調查中,面對複雜的節能建築立面設計需要一個綜合的方法來應對目前當地的問題包含:1.以節能為導向的感應式立面設計流程、2.針對國內綠建築法規的動態模式模擬工具、3.實體模型之動態構件細部設計的模組化開發。根據目前國內所面臨的這些問題,因此本研究研擬的核心議題為:
「在既有綠建築法規的框架之下,如何以整合BIM工具的感應式立面設計方法以達到節能結果?」
綠建築法規為國內建築師節能的基本指標,當設計工具的演進增加了更多創新的設計模式可能性,這也是本論文探討的動機;因此本研究透過整合BIM工具與相關的數位製造工具,在感應式立面設計流程中,採取模組化的設計方法試著回應以下兩個問題:A.如何協助設計師評估感應式立面的節能效益?、B.如何以數位製造工具呈現感應式立面的實體模型構件之具體結果?
為了解決上述的問題,本研究分別針對感應式立面設計的三個階段(元件模型設計、元件數值模擬、物件構築互動)與三個平台(虛擬平台、實體平台、雲端平台)之間的關係作為研究方法進行階段性實作;在虛擬模型中,運用Revit內建自適應元件樣板作為原型開發的設計工具,並以Dynamo作為支援連結BIM模型的分析工具,在實體模型中,則以3D列印與雷射切割作為細部構件的開發設計工具,並探討實虛互動的可能性。接著根據上述實作結果,架構一個基於BIM平台的感應式立面設計流程,並將一設計專案之南向立面做流程演示以討論其可行性。根據研究結果,感應式立面設計流程透過整合BIM工具與模組化的設計方法可以加快評估節能結果評估,而綠建築法規的參數關係可以輔助整合式的感應式立面開發,因其包含的開口率、遮陽係數、牆與窗的材料可以被設計於元件中。本研究發展的兩種工具原型,可在早期設計階段協助設計師評估感應式立面的節能效益,而模組化感應式立面實體模型設計中,則嘗試運用數位製造技術使其具有持續開發的潛力。
本文提出一個策略去整合針對綠建築法規的檢驗系統在亞熱帶地區的感應式立面設計上,以達最佳化節能效益,並提供一個全面綜合的方法使用BIM工具如Revit Dynamo等外掛來連結BIM模型到各種類型的分析工具以創造一個客製化能源分析平台。主要貢獻包含:
(1)探索系統化的設計流程與感應式立面設計的自適應元件分析;
(2)發展符合綠建築法規的檢核系統;
(3)發展自適應立面設計流程的最佳化系統,並探索整合各種數位設計方法的可能性。
本研究呈現了不同於以往的靜態參數化建築立面設計生產方式,當模組化的感應式立面產品本身包含早期設計階段被評估的資訊,配合初步開發的程式檢驗工具與流程架構,則以節能為導向的感應式立面新設計方法更因整合式的模組立面而更完整;因此在進入專案設計前整合式立面元件之間取得初步的節能平均標準,則在後期的空間設計中可縮短整體評估時間,加快回饋結果輔助設計者選擇設計方案。
SUMMARY
This paper explores integration methods for energy modeling of responsive facade design. The main contributions of the paper are: (1) exploring
systematic design process with analysis for adaptive components in responsive facade design; (2) developing compliance checking system for green
building regulations; (3) developing optimization system for adaptive façade design process and exploring the possibilities for integrating various
digital design methods.
INTRODUCTION
In the sustainble design issue, "Responsive Façade" is one used in recent years to the building facade design techniques to achieve energy efficient performance.
From 2004, the IEA (International Energy Agency) has started research efforts for AIF (Advanced Integrated Facades), DSF (Double Skin Façades) and RF (Responsive Façade). Responsive facade provides subtle composition and flexible adjustability of façade elements for optimizing the total effect of heat transfer, daylighting, and solar insolation. The BIM-based tools are used in energy simulation today, but it’s not enough for responsive façade. This study is focused on the design method of responsive façade using BIM tool and digital fabrication. Design alternatives of responsive façade components should be studied through the interactive feedback between Virtual and Physical models with integrated tools of BIM, parametric design and sensor devices, and the dynamic element testing included more solid models can be designed as a communication tool.
LITERATURE REVIEW
From our review and local project survey, to face the complexity of sustainable building façade design, it requires a holistic and integrated approach to deal with the local situations as follows:1. Responsive Facade Design Process based on energy efficient 2.Green Building Regulations Tool for Adaptive Façade 3. Dynamic Element Detail design with Systemic Development. According to the current problems faced by the country, the elaboration of this study core issues as follows: “How to integrate BIM tools induction facade design approach to achieve energy-efficient results under the existing green building regulation framework?” With the modular design method in resposive façade design process we try to response the two question: A. How to help designers evaluate the energy efficiency of responsive facade? B. How to use digital manufacturing tools presented mock-up responsive facade of model element results?
METHODS AND FRAMEWORK
To solve the problems, with the support of Dynamo which links BIM models to various types of analysis tools, this study takes an integrated approach to developing a Green-BIM design platform that provides smart components and interactive virtual and physical design tools to assist the designers easily apply kinetic and complex façade components to enhance design process.The implementations of the façade design platform include two parts:
Responsive Façade Design Workflow & System Development:
Respectively, to explore the relationship between the three phases and three platforms as research methods. In virtual model, the present study using Revit adaptive component built as a prototype model developed design tools, and Dynamo as a support link BIM model analysis tools. In physical model, 3D printing and laser cutting as the digital fabrication tool the detail element and seneor embedded into prototype model. Explore the possibility of virtual and physical interaction.
Test Cases and Results:
Development scheme optimization process in design iterations is demonstratd by possible permutations of the two modules. We chose the south-facing glaze curtain of an existing city hall building as the main spot for simulation. In each scheme, whole building energy simulation are analyzed in the Revit by Dynamo connected cloud database and Green building regulation-ENVLOAD.
RESULTS AND DISCUSSION
As shown in Figure 2, we then applied prototype A and B to the same project and simulated them on the EnvLoad Evaluation Platform to compare the EnvLoad values for the two scenarios. The related reference data are acquired from the cloud database (e.g. site IHk), or from the BIM model geometry (e.g. window area Ai and shading coefficient ki) and previously built-in templates (e.g. glazing insolation i). According to the local regulations, the design results of EnvLoad values should be divided by the baseline value and to get the final results of EEV ratio as a standard for evaluating energy performance. Currently the EEV value should be lower than 0.8. From the simulation results for the above scenarios, we found that Prototype A (the Grill-Brick Style Façade) has lower EEV and more stable than Prototype B (the Tilting-Fins Style Façade). It means that, in terms of energy performance, controlling the responsive façade in the range and turning the shading is more useful than moving them.
CONCLUSSION
The main contributions of the paper are: (1) exploring systematic design process with analysis for adaptive components in responsive facade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive façade design process and exploring the possibilities for integrating various digital design methods.
This study presents different from the previous general parametric building facade design and production methods, when modular responsive facade contains information products early in the design phase could be evaluated, with the initial development of test tools and process framework, the energy-efficient-based responsive facade design process is more complete;Therefore, before entering the project design, integrated the facade components to achieve the average energy efficient standards, in the latter part of the space design can shorten the overall assessment of the time. Accelerate feedback results to assist the designer for selection.
外文文獻
Aksamija, A.: 2015, High-Performance Building Envelopes: Design Methods for Energy-Efficient Facades, in Proceedings of the Building Enclosure Science and Technology (BEST) 4 Conference, Kansas City on April 13-15, 2015.
Loonen, R. C. G. M., et al. "Climate adaptive building shells: State-of-the-art and future challenges." Renewable and Sustainable Energy Reviews 25 ,2013. 483-493.
Kensek, K. M. "Integration of Environmental Sensors with BIM: case studies using Arduino, Dynamo, and the Revit API." , 2014.
Anderson, K. Design Energy Simulation for Architects: Guide to 3D Graphics. Routledge, 2014.
Linn, Charles. Kinetic architecture: design for active envelopes. Images Publishing, 2014.
Aksamija, A. & PerKins+Will. SUSTAINABLE FAÇADE: Design Methods for High-Performance Building Envelops. WILEY, 2013. 2-15.
Lehmann, S. “Energy Efficient Duilding Design: towards climate-responsive architecture.”, 2011.
The AIA. An Architect’s Guide to INTEGRATING ENERGY MODELING IN THE DESIGN PROCESS. The AIA, 2012.
Jang, Sun-Young, Seongki Lee, and Sung-Ah Kim. "Collaborative Responsive Façade Design Using Sensor and Actuator Network." Cooperative Design, Visualization, and Engineering. Springer Berlin Heidelberg, 2013. 11-18.
Asl, M. R., Bergin, M., Menter, A., & Yan, W. "BIM-based parametric building energy performance multi-objective optimization." Education and Research in Computer Aided Architectural Design in Europe 32, 2014. 1-10.
Rahmani Asl, M., Zarrinmehr, S., & Yan, W. “Towards BIM-based parametric building energy performance optimization.”, 2013.
Perino, M. "IEA–ECBCS Annex 44." Integrating environmentally responsive elements in buildings, state of the art review, 2007.
Chen, Jia-Yih. “RESPONSIVE FAÇADE DESIGN: SURVEY AND BIM SIMULATION” International Conference on Planning and Design, 2015. 251-259
Sharaidin, K. "Kinetic facades: towards design for environmental performance.", 2014.
Cynthia Permata Dewi. "Double Skin Facade Strategy in Reducing Cooling Energy Demand for Energy Efficiency.", 2013.
Welle B., Haymaker J., & Rogers Z. "ThermalOpt: A methodology for automated BIM-based multidisciplinary thermal simulation for use in optimization environments." Building Simulation. Vol. 4. No. 4. Tsinghua Press, 2011.
Kim, H., Asl, M. R., & Yan, W. "Parametric BIM-based Energy Simulation for Buildings with Complex Kinetic Façades." , 2015.
中文文獻
鄭泰昇、陳嘉懿 (2015) 建築物節能外牆之應用研究, 內政部建築研究所研究成果報告書. 台北市: 內政部建築研究所
鄭泰昇 (2014) BIM導入台灣綠建築設計案例實作研究, 內政部建築研究所研究成果報告書. 台北市: 內政部建築研究所
潘晨安 (2015) 智慧機器建築的動態表層研究, 國立成功大學建築研究所, 博士論文.
蔡宗瑋 (2013) 性能導向之參數式設計於BIM整合評估流程, 國立成功大學建築研究所, 碩士論文.
呂啟銘 (2015) 應用BIM於建築設計階段之碳足跡模擬計算工具研發, 國立成功大學建築研究所, 碩士論文.
內政部 (2012) 建築物強化外殼部位熱性能節約能源設計技術規範. 台北市: 內政部建築研究所.
內政部 (2012) 建築物技術規則設計施工篇. 台北市: 內政部建築研究所.
林憲德 (2009) 綠建築設計技術彙編. 台北市: 內政部建築研究所.
李訓谷、成淑君、吳上源、謝恩倉 (2011) 創新節能窗之設計探討, 中華民國全國建築師公會 第八屆台灣建築論壇.
陳建忠、施宣光 (2013) BIM應用於建築節能評估之策略與實務. ,內政部建築研究所
葉世宗 (2015) 透境:光電構築‧鋼鐵風情. 台北市: 田園城市出版社.
陳一鳳 (2014) 可調適性居住空間模組之BIM元件建置研究-以出租公營住宅為例. , 國立成功大學建築研究所, 碩士論文.
廖小烽、王君峰 (2013) Revit2013/2014建築設計火星課堂: 人民郵電出版社.
曾瑋婷 (2014) 初步設計階段綠建築設計流程與決策之案例分析, 國立臺灣科技大學建築研究所, 碩士論文.
陳思嘉 (2013) 結合數位製造的設計流程, 國立成功大學建築研究所, 碩士論文.
參考網站
Autodesk BPA BLOG http://autodesk.typepad.com/bpa/
EnergyPlus能耗模拟分析流程和案例分析,田志超 http://www.gbbim.com/green/201505/00000035.html
Dynamo BIM http://dynamobim.org/
Jeremy Roh Reivt教學 https://www.youtube.com/channel/UCqmgLuMuu50dWl-mOLEy35A
阿布達比設計說明網站 http://aedasresearch.com/features/view/advanced-modelling/project/al-bahar-towers Fortmeyer
GSW管理總部辦公大樓設計說明網站 http://filt3rs.net/case/colorful-folding-perforated-panels-sh-berlin
ADAPTIVE BUILDING INITIATIVE: Helio Trace http://www.adaptivebuildings.com/heliotrace.html
Miller, N.: 2015, Raindrops, http://www.nodelete.org/posts/google-sheets-connect/
Archi-lab, bumblebee – dynamo and excel interop, http://archi-lab.net/bumblebee-dynamo-and-excel-interop/
Firefly http://www.fireflyexperiments.com/#home
Jianyouli, Generative Product Design. https://jianyouli.wordpress.com/