簡易檢索 / 詳目顯示

研究生: 范宸語
Fan, Chen-Yu
論文名稱: 化學氣相沉積法製備全無機溴化錫銫鈣鈦礦電阻式記憶體於類神經突觸元件之應用與研究
CVD-grown All-Inorganic Lead-Free CsSnBr₃ Perovskite-Based Resistive Memory for Neuromorphic Synaptic Device Applications
指導教授: 李亞儒
Lee, Ya-Ju
涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 83
中文關鍵詞: 人工神經網路電阻式記憶體錫基鈣鈦礦化學氣相沉積影像辨識光學突觸
外文關鍵詞: ANN, RRAM, Tin-Based Perovskite, CVD, Synapse, Image Recognition
相關次數: 點閱:16下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦材料因其優異的性質,例如高吸收係數、可調控的能隙以及優異的載子遷移率,而在光電應用領域(如發光二極體、光電探測器、雷射與太陽能電池)中備受矚目。其中,錫基鈣鈦礦因具備環保特性,已成為取代含鉛鈣鈦礦的有力候選材料。在本研究中,我們設計並製作了一種基於 ITO/ZnO/CsSnBr₃/NiO/Ag 異質結構的錫基鈣鈦礦突觸元件。此全無機 CsSnBr₃ 薄膜是透過結合三區爐的化學氣相沉積法(CVD)所製備。我們系統性地研究了這些錫基鈣鈦礦薄膜的形貌、結晶結構及光學特性,並進一步探討 ITO/ZnO/CsSnBr₃/NiO/Ag 結構於模擬神經突觸行為中的應用表現。結果顯示,CsSnBr₃ 薄膜對不同波長光具有良好吸收能力,並能在光刺激下展現出短期與長期可塑性(STP 與 LTP),模擬出類似生物神經突觸的記憶與學習行為。此外,CsSnBr₃ 薄膜展現出高結晶品質、缺陷與晶界較少以及緊密的晶格排列,有助於提升其操作穩定性與重複性。此外,實驗結果亦顯示元件對相同波段光源具有多階阻態的 RRAM 特性,可作為類神經元的集成元件,實現視覺感知與記憶模擬。透過 MNIST 數字資料庫進行訓練與測試,可對不同顏色光源下的三類元件分別賦予權重並進行權重更新,進而展現於圖像辨識任務中具有明顯優勢的識別結果。

    Perovskite materials have attracted significant attention in optoelectronic applications—such as light-emitting diodes, photodetectors, lasers, and solar cells—due to their exceptional properties, including high absorption coefficients, tunable bandgaps, and excellent carrier mobility. Among them, tin-based perovskites have emerged as promising candidates to replace lead-based perovskites owing to their environmental friendliness. In this study, we designed and fabricated a tin-based perovskite synaptic device with an ITO/ZnO/CsSnBr₃/NiO/Ag heterostructure. The all-inorganic CsSnBr₃ thin films were synthesized using a three-zone tube furnace via chemical vapor deposition (CVD). We systematically investigated the morphology, crystal structure, and optical properties of the CsSnBr₃ thin films, and further evaluated the synaptic behavior of the ITO/ZnO/CsSnBr₃/NiO/Ag configuration in neuromorphic applications. The results demonstrated that the CsSnBr₃ films exhibited strong light absorption across different wavelengths and showed both short-term and long-term plasticity (STP and LTP) under optical stimulation, effectively mimicking biological synaptic memory and learning behaviors. Moreover, the CsSnBr₃ films displayed high crystallinity with minimal defects and grain boundaries, contributing to enhanced operational stability and repeatability. Additionally, the device showed multilevel resistive switching characteristics under illumination of the same wavelength, enabling it to function as an integrated neuromorphic component for visual perception and memory simulation. By training and testing with the MNIST dataset, the devices under three different color lights were individually assigned weights, which were subsequently updated, achieving superior recognition performance in image classification tasks.

    摘要 i Abstract ii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 鈣鈦礦 3 2.1.1 鈣鈦礦CsSnBr₃化學氣相沉積 4 2.2 RRAM 6 2.2.1 ZnO/NiO 結構的 RRAM 性能 7 2.2.2 鈣鈦礦應用於RRAM元件 9 2.3 鈣鈦礦應用於人工突觸 11 第三章 原理 20 3.1 Photonic RRAM的光響應機制 20 3.2 ZnO 與 NiO 的設計考量 21 3.3 化學氣相沉積法 22 第四章 實驗方法與儀器 24 4.1 元件製備 24 4.1.1 基板清洗 24 4.1.2 元件製作 24 4.1.3 CsSnBr3薄膜製備 25 4.2 電學量測系統 28 4.3 實驗儀器 28 4.3.1 電子天秤 28 4.3.2 超音波震盪機 29 4.3.3 光學顯微鏡 30 4.3.4 多功能電源電錶 30 4.3.5 示波器 31 4.3.6 訊號產生器 31 4.3.7 高溫爐管系統 32 4.3.8 射頻磁控濺鍍機(Sputter) 33 4.3.9 熱蒸鍍機(Thermal Evaporator) 34 4.3.10 超高解析掃描式電子顯微鏡(UHR-SEM) 35 4.3.11 高強度多功能X光薄膜微區繞射儀 36 4.3.12 X光光電子能譜儀(XPS) 37 4.3.13 光激螢光光譜儀 38 4.3.14 穿透/反射光譜量測系統 39 第五章 結果與討論 41 5.1 成長於ITO基板之CsSnBr3薄膜 41 5.1.1 改變腔體內氣流之實驗結果 41 5.1.2 改變生長時間之薄膜形貌結果 43 5.1.3 材料特性分析 46 5.2 光照對 RRAM 開關行為之影響 47 5.3 CsSnBr3 的ONS裝置中的突觸動力學 49 5.3.1 單一光脈衝激發下的 EPSC 響應 50 5.3.2 雙光脈衝刺激下的突觸促進行為(Paired-Pulse Facilitation, PPF) 51 5.3.3 重複光脈衝刺激下的長期突觸可塑性(Long-Term plasticity, LTP) 53 5.3.4 影像辨識 57 第六章 結論 61 參考文獻 63

    1. Waser, R., & Aono, M. Nature Materials, 6(11), 833–840. (2007).
    2. Wang, Z. et al. Nature Electronics, 1(3), 137–145. (2018).
    3. Snaith, H. J. Journal of Physical Chemistry Letters, 4(21), 3623–3630. (2013).
    4. Kojima, A. et al. Journal of the American Chemical Society, 131(17), 6050–6051. (2009).
    5. Tan, Z.-K. et al. Nature Nanotechnology, 9(9), 687–692. (2014).
    6. Dou, L. et al. Nature Communications, 5, 5404. (2014).
    7. Zhang, Q. et al. Nano Letters, 15(7), 4647–4653. (2015).
    8. Wang, Y. et al. Advanced Materials, 28(20), 4141–4151. (2016).
    9. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, no. 6107, pp. 643–647, (2012).
    10. S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nature Nanotechnology, vol. 10, pp. 391–402, (2015).
    11. Y. Li, X. Zhao, and S. Chen, “Intrinsic defects and electronic properties in lead-free halide perovskite CsSnBr₃,” J. Mater. Chem. A, vol. 5, pp. 11445–11453, (2017).
    12. M. Zhang, Y. Liang, X. Wang, et al., “Strategies for enhancing the stability of tin-based perovskite solar cells,” Joule, vol. 2, pp. 2480–2495, (2018).
    13. L. Zhang et al., “Stabilizing tin-based perovskite solar cells by alloyed A-site cations,” ACS Energy Lett., vol. 5, no. 2, pp. 360–366, (2020).
    14. Z. Zhang, J. Chen, W. Liu, H. Wang, and Y. Wang, “Tin-based all-inorganic perovskite photodetectors fabricated by chemical vapor deposition,” Physica E: Low-dimensional Systems and Nanostructures Volume 134, 114843, (2021).
    15. R. Zhang, Sh. U. Yuldashev, J. C. Lee, V. Sh. Yalishev, T. W. Kang, and D. J. Fu, “Memristive behavior of ZnO/NiO stacked heterostructure,” Microelectronic Engineering Volume 112, Pages 31-34, (2013).
    16. K. Ellmer, A. Klein, B. Rech Transparent Conductive Zinc Oxide Springer-Verlag ,pp. 14–19, (2007).
    17. Yan Wang, et al. Synergies of Electrochemical Metallization and Valence Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. Advanced Materials Volume30, Issue28 1800327, (2018).
    18. Jie Lao, et al. (2022). An air-stable artificial synapse based on a lead-free double perovskite Cs₂AgBiBr₆ film for neuromorphic computing. J. Mater. Chem. C, 5706-5712, (2021).
    19. Fumin Ma, et al. Optoelectronic Perovskite Synapses for Neuromorphic Computing. Advanced Functional Materials Volume30, Issue11,1908901, (2020).
    20. Lukasz Lach, Dmytro Svyetlichnyy. Energies, 17(13), 3267, (2024).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE