簡易檢索 / 詳目顯示

研究生: 林梵
Lin, Fan
論文名稱: 以事件相關電位探討刺激向度與反應管道之作業轉換
Electrophysiological correlates of dimension-set switch and response-modality switch
指導教授: 謝淑蘭
Hsieh, Shu-Lan
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系認知科學碩士班
MS in Cognitive Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 作業轉換刺激向度轉換反應管道轉換雙重轉換事件相關電位
外文關鍵詞: task switch, dimension-set switch, response-modality switch, double switch, event-related potential
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作業轉換派典乃為探討控制執行功能的利器,惟多關注在刺激向度或刺激與反應配對之層面,顯少探討反應執行層面的轉換。有鑑於此,本研究旨在探討刺激向度層面與反應執行層面之作業轉換有何異同,以及當涉及兩者皆轉換時的心智歷程。實驗一收錄二十四位大學或碩士生,並藉由行為反應時間以及事件關聯腦電位波的量測來探討不同類型的作業轉換於準備階段、刺激辨識階段以及執行階段上的差異變化。
    行為反應時間結果發現刺激向度轉換的表現顯著劣於反應管道轉換以及雙重轉換,此外,雙重轉換虧損與兩個單一轉換虧損的總和呈現下加成的結果,顯示刺激向度及反應管道兩個因子有交互作用;研究更進一步發現,此下加成的趨勢並不因特定的刺激向度或反應管道而有所不同。
    電生理證據顯示無論線索、刺激或反應區間於整體分析都無刺激向度轉換及反應管道轉換之差異,但區分反應管道及刺激向度後在線索鎖定區間發現:當手反應時,P2、N2有刺激向度轉換與反應管道轉換之虧損差異;當腳反應時,N1、P2有刺激向度轉換與反應管道轉換之虧損差異。在刺激鎖定區間發現當腳反應時反應管道轉換比之刺激向度轉換有較大的P3成份波激發。在反應鎖定區間則發現手與腳的反應有相反大小程度的激發結果。本研究結果顯示兩種單一轉換整體上來看有共同的神經機制,但會因為手或腳的反應而有不同程度的調控。

    Task switching paradigm is widely used to investigate the cognitive control, but is almost focused on the switching of stimulus dimension or S-R mapping level. Experiment 1 is aimed to differentiate dimension-set switch and response-modality switch and to see what the pattern it is when involved switching both. We recruited 24 students ranging from 18~23 years and used high temporal resolution technique, event-related potential, to find the four task types related components.
    The behavioral data shows that dimension-set switch is significantly slower than response-modality switch and double switch, and by the under-additive switch cost pattern it shows that the two task-set components have interaction. And the foot/hand responses or shape/color dimensions didn’t change the pattern.
    The overall ERP evidence shows that dimension-set switch is not different from response-modality switch no matter in cue-locked, S1-locked or R1-locked interval. As we put dimension and modality into analysis, in the cue-locked interval, for hand responses, dimension-set switch cost is different from response-modality switch cost in P2 and N2 components, and for foot responses, dimension-set switch cost is different from response-modality switch cost in N1 and P2 components. In the S1-locked interval, there is difference between the two types of single switch in P3 component. In the R1-locked interval, the two single switches had reversed polarity for hand and foot responses. Therefore, from the overall data there are shared processes between dimension-set switch and response-modality switch, but there are distinct modulations between the two according to which modality responded.

    摘要 I Abstract II 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1.1 作業轉換的重要性與文獻探討 1 1.2 本篇研究重心 6 1.3 研究假設與預測 8 第二章、研究方法 12 2.1 受試者 12 2.2 刺激材料與設計 12 2.3 實驗程序 13 2.4 電生理紀錄 15 2.5 資料分析 15 第三章、結果 17 3.1行為資料 17 3.2 線索鎖定區間 21 3.3 刺激鎖定區間 29 3.4 反應鎖定區間 35 第四章、討論與結論 40 4.1 行為結果 40 4.2 電生理結果 42 4.2.1線索鎖定區間 43 4.2.2 刺激鎖定區間 47 4.2.3 反應鎖定區間 50 4.3 結論 51 參考文獻 54 附錄一 實驗二 59 附錄1-1 方法 59 附錄1-1-1 受試者 59 附錄1-1-2 刺激材料與實驗程序 60 附錄1-2 結果 60 附錄1-2-1 行為資料 60 附錄1-2-2 腦波資料 62 附錄1-3 討論 63 附錄二 實驗三 65 附錄2-1 方法 65 附錄2-1-1受試者 65 附錄2-1-2 實驗程序 65 附錄2-2 結果 66 附錄2-2-1 行為資料 66 附錄2-2-2 腦波資料 69 附錄2-3 討論 69 附錄三 針對作業型態(4;重覆作業、刺激向度轉換、反應管道轉換、雙重轉換)、反應管道(2;手、腳)及刺激向度(2;顏色、形狀)進行4 x 2 x 2 ANOVA之表。 71

    Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Ulma & M. Moscovitch (Eds.), Attention and performance XV: conscious and nonconscious information processing (pp. 421-452). Cambridge, MA: MIT press.
    Banich, M. T. (2009). Executive function: The research for integrated account. Current Directions in Psychological Science, 18, 89. doi: 10.1111/j.1467-8721.2009.01615.x
    Barceló, F. (2003). The Madrid card sorting test(MCST): a task-switching paradigm to study executive attention with event-related potentials. Brain Research Protocols, 11, 27-37.
    Barceló, F., Escera, C., Corral, M. J., & Periáñez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18(10), 1734-1748.
    Bates, J.A.V. (1951). Electrical activity of the cortex accompanying movement. J. Physiol., 113, 240-257.
    Brunia, C. H. M., & van den Bosch, W. E. J. (1984). Movement related slow potentials 1. A contrast between finger and foot movements in right handed subjects. Eletroencephalography and Clinical Neurophysiology, 57, 515-527.
    Dumontheil, I., Gilbert, S. J., Burgess, P. W., & Otten, L. J. (2010). Neural correlates of task and source switching: Similar or different? Biological Psychology, 83, 239-249.
    Gajewski, P. D., & Falkenstein, M. (2011). Diversity of the P3 in the task-switching paradigm. Brain Research, 1411, 87-97.
    Gerbrandt, L. K., Goff, W. R. & Smith, D. B. (1973). Distribution of the human average movement potential. Electroenceph.. clin.. Neurophysiol, 34, 461-474.
    Gilden, L., Vaughan, H. G., Jr. & Costa, L. D. (1966). Summated human EEG potentials associated with voluntary movements. Electroenceph.. Clin.. Neurophysiol. 20, 433-438.
    Hahn, S., Andersen, G. J., & Kramer, A. F. (2010). Multidimensional set switching. Psychonomic Bulletin & Review, 10(2), 503-509.
    Hsieh, S. (2012). Two decades of research on task switching: What more can we ask? Chinese Journal of Psychology, 54(1), 67-93.
    Hsieh, S. & Wu, M. (2011). Electrophysiological correlates of preparation and implementation for different types of task shifts. Brain Research, 1423, 41-52.
    Hübner, R., Futterer, T., & Steinhauser, M. (2001). On attentional control as a source of residual shift costs: Evidence from Two-Component Task Shifts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 640-653.
    Ikeda, K. & Hasegawa, T. (2012). Task confusion after switching revealed by reductions of error-related ERP components. Psychophysiology, 49, 427-440.
    Kieffaber, P. D. & Hetrick, W. P. (2005). Event-related potential correlates of task switching and switch costs. Psychophysiology, 42, 56-71.
    Kleinsorge, T. & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300-312.
    Kleinsorge, T., Heuer, H., & Schmidtke, V. (2001). Task-set reconfiguration with binary and three-valued task dimensions. Psychological Research, 65, 192-201.
    Kleinsorge, T., Heuer, H., & Schmidtke, V. (2002). Processes of task-set reconfiguration: switching operations and implementation operations. Acta Psychologica, 111, 1-28.
    Kornhuber, H.H. & Deecke, L. (1965). Hionpotentialänderungen bei Willkürbewegungen und passive Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. Ges. Physiol., 284, 1-17
    Logan, G. D. & Bundesen, C. (2003). Clever homunculus: is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology, 29(3), 575-599.
    Lucas, S., Philipp, A. M., Koch, I. (2010). Switching attention between modalities: further evidence for visual dominance. Psychological Research, 74, 255-267. doi: 10.1007/s00426-009-0246-y
    Luck, S. J. (2005). An introduction to event-related potentials and their neural origins. Cambridge, MA: MIT press.
    Mayr, U., Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experiment Psychology: General, 129(1), 4-26.
    Meiran, N. (1996). Reconfiguration of processing mode prior to performance. Journal of Experiment Psychology: Learning, Memory, Cognition, 22, 1423-1442.
    Meiran, N., & Marciano, H. (2002). Limitations in advance task preparation: Switching the relevant stimulus dimension in speeded same-different comparisons. Memory & Cognition, 30(4), 540-550.
    Meuter, R. F. I. & Allport, D. A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 25-40.
    Miyajima, M., Toyomaki, A., Hashimoto, N., Kusumi, I., Murohashi, H., Koyama, T. (2012). Discrepancy of neural response between exogenous and endogenous task switching: an event-related potentials study. Cognitive neuroscience and neuropsychology, 23(11), 642-6. doi: 10.1097/WNR.0b013e328354b066
    Mortier, K.,Theeuwes, J., Starreveld, P. (2005). Response selection modulates visual search within and cross dimensions. J. Exp. Psychol. Hum. Percept. Perform. 31, 542-557.
    Philipp, A. M., Gade, M., & Koch, I. (2007). Inhibitory processes in language switching: Evidence from switching language-defined response sets. European Journal of Cognitive Psychology, 19(3), 395-416.
    Philipp, A. M. & Koch, I. (2011). The role of response modalities in cognitive task representations. Advances in Cognitive Psychology, 7, 31-38. doi: 10.2478/v10053-008-0085-1
    Philipp, A. M., Weidner, R., Koch, I., & Fink, G. R. (2012). Differential roles of inferior frontal and inferior parietal cortex in task switching: Evidence from stimulus-categorization switching and response-modality switching. Human Brain Mapping.
    Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognition tasks. Journal of Experiment Psychology: General, 124, 207-231.
    Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching, Journal of Experimental Psychology: Human Perception and Performance, 27, 763-797.
    Rushworth, M. F. S., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14, 1139-1150.
    Rushworth, M. F. S., Passingham, R. E., & Nobre, A. C. (2002). Components of attentional set-switching. Experimental Psychology, 52(2), 83-98.
    Shibasaki, H., Barrett, G., Halliday, E., & Halliday, A. M. (1980). Components of the movement-related cortical potential and their scalp topography. Electroencephalography and Clinical Neurophysiology, 49, 213-226.
    Sternberg, S. (1969). The discovery of processing stages: the method of additive factors. Acta Psychology, 30, 276-315.
    Tieges, Z.,Snel, J., Kok, A., Plat, N., & Ridderinkhof, R. (2007). Effects of caffeine on anticipatory control processes: Evidence from a cued task-switch paradigm. Psychophysiology, 44, 561-578.
    West, R., Bailey, K., & Langley, M. (2009). An investigation of neural correlates of attention and effector switching using ERPs. Cognitive, Affective, & Behavioral Neuroscience, 9(2), 190-201. doi: 10.3758/CABN.9.2.190
    Woodward, T. S., Bub, D. N., & Hunter, M. A. (2002). Task switching deficits associated with Parkinson’s disease reflect depleted attentional resources. Neuropsychologia, 40, 1948-1955.

    下載圖示 校內:2019-08-30公開
    校外:2019-08-30公開
    QR CODE