| 研究生: |
蔡承霖 Tsai, Cheng-Lin |
|---|---|
| 論文名稱: |
以極化子通道增益氧化鎳薄膜產氫效率之研究 Polaron Channel Enhancing Hydrogen Generation of NiO Thin Film |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 水熱合成法 、氧化鎳 、二氧化鋯 、極化子 、光電化學水分解反應 |
| 外文關鍵詞: | hydrothermal method, nickel oxide, zirconium dioxide, photoelectrochemical water splitting |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著地球氣候之變遷,開發再生能源之議題已經成為萬眾矚目的焦點,其中的氫能是一種潔淨且來源相當豐富的一種再生能源。於1972年Fujishima與Honda 發表運用半導體材料「二氧化鈦」與鉑金作為電極,並利用照光可產生氫氣與氧氣,開啟了後人將半導體材料運用於光電化學產氫等研究之道路。本實驗藉由水熱合成法製備出氧化鎳薄膜之前驅物且混合二氧化鋯顆粒於其中,並以退火熱處理中輔以不同比例之O2/N2氣氛將其轉換成氧化鎳,將其作為光電極運用於光電化學分解水產氫之研究上,並藉由多種量測輔助可得知材料之特性,並建構出其能帶相關位置。於本研究中使用XRD、SEM、EDX、UV-Vis、UPS、XPS、CV、Mott-Schottky、LSV、EIS等分析儀器量測薄膜之特性,並發現隨著退火O2/N2氣氛之增加,經由XPS量測出之薄膜中Ni3+比例與電化學儀器量測其最大產氫效率、NiO/ITO介面阻抗皆具有關聯性,藉由相關理論可佐證其關聯性皆由極化子所貢獻,並藉由循環伏安法之量測結果得知氧化鎳材料中極化子傳遞電子通道之位置,與線性伏安法之相同電位比較,可發現藉由此極化子通道傳遞電子是在高導電率下進行的,且隨著氧化鎳薄膜中極化子之數目增加,量測出之最大光電產氫效率也會隨之增加。換句話說,本實驗藉由改變退火氧氣氛含量來增加極化子通道之數目以提升光電化學產氫之效率,另外,本研究亦發現混合二氧化鋯顆粒於氧化鎳薄膜中,因為其與氧化鎳價帶接面處易累積電洞之特性,得以幫助產氫效率之提升,並於本實驗中量測出最大產氫效率約為0.34%,估算出之產氫速率約為7.39×10-4 L/s*m^2。
In this research, a nickel oxide and which mixes with sub-micron zirconium dioxide particles thin films were synthesized by hydrothermal method and drop casting method under different annealing atmosphere of oxygen and nitrogen. The characteristics of the material can be measured by a variety of analysis, and the relevant band positions can be constructed. From the results, it was found that increasing of annealing atmosphere of O2/N2 has relation with the ratio of Ni3+/(Ni2++Ni3+) in the film measured by XPS, the maximum hydrogen production efficiency determined by LSV, and the ITO/NiO interface resistance mesured by EIS. The related theory can prove that it is contributed by the polaron. The results show numbers of polaron channel are increased by annealing atmosphere of O2/N2 and more amounts of polaron channel will improve the efficiency of photoelectrochemical water splitting efficiency. In addition, this study also shows that mixing ZrO2 particles in NiO thin films will enhance water splitting efficiency compared to the pure one. This phenomenon is mainly contributed by the interface of valence band of NiO and ZrO2 which will accumulate holes. In this experiment, the maximum photoelectrochemical water splitting efficiency is 0.34%, and the estimated hydrogen production rate is about 7.39×10-4 L/s×m2.
1. De Jongh, P.E., HYDROGEN STORAGE Keeping out the oxygen. Nature Materials, 2011. 10(4): p. 265-266.
2. Ghita, D., et al., Hydrogen Production by Ethanol Steam Reforming. Revista De Chimie, 2015. 66(6): p. 847-850.
3. Jin, H., et al., Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010. 35(13): p. 7151-7160.
4. Romero-Paredes, H., et al., Exergy and separately anergy analysis of a thermochemical nuclear cycle for hydrogen production. Applied Thermal Engineering, 2015. 75: p. 1311-1320.
5. Fujiwara, S., et al., Hydrogen production by high temperature electrolysis with nuclear reactor. Progress in Nuclear Energy, 2008. 50(2-6): p. 422-426.
6. Saratale, G.D., et al., Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. Journal of Scientific & Industrial Research, 2008. 67(11): p. 962-979.
7. Miranda, E.T.a.R., Hydrogen from renewable power: Technology outlook for the energy transition. IRENA ed. 2018.
8. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
9. Khaselev, O. and J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science, 1998. 280(5362): p. 425-427.
10. Liao, C.H., C.W. Huang, and J.C.S. Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts, 2012. 2(4): p. 490-516.
11. Lu, Q.P., et al., 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016. 28(10): p. 1917-1933.
12. Huang, H., et al., Polaron Disproportionation Charge Transport in a Conducting Redox Polymer. The Journal of Physical Chemistry C, 2017. 121(24): p. 13078-13083.
13. Antila, L.J., et al., Dynamics and Photochemical H2 Evolution of Dye–NiO Photocathodes with a Biomimetic FeFe-Catalyst. ACS Energy Letters, 2016. 1(6): p. 1106-1111.
14. Gross, M.A., et al., Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO. Chemical Science, 2016. 7(8): p. 5537-5546.
15. Li, L., et al., Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chemical Communications, 2012. 48(7): p. 988-990.
16. Mazzio, K.A. and C.K. Luscombe, The future of organic photovoltaics. Chemical Society Reviews, 2015. 44(1): p. 78-90.
17. Hamid, S.B.A., et al., Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. Journal of Energy Chemistry, 2017. 26(2): p. 302-308.
18. Hwang, J.D. and T.H. Ho, Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering. Materials Science in Semiconductor Processing, 2017. 71: p. 396-400.
19. Dubal, D.P., et al., Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 2015. 11: p. 377-399.
20. Bartel, L.C. and B. Morosin, EXCHANGE STRICTION IN NIO. Physical Review B, 1971. 3(3): p. 1039-&.
21. Ukoba, K.O., A.C. Eloka-Eboka, and F.L. Inambao, Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable & Sustainable Energy Reviews, 2018. 82: p. 2900-2915.
22. Hotovy, I., et al., Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 1998. 50(1-2): p. 41-44.
23. Chen, S.C., et al., Characterization and properties of NiO films produced by rf magnetron sputtering with oxygen ion source assistance. Thin Solid Films, 2014. 572: p. 51-55.
24. Hotovy, I., J. Huran, and L. Spiess, Characterization of sputtered NiO films using XRD and AFM. Journal of Materials Science, 2004. 39(7): p. 2609-2612.
25. Zhao, Y., et al., Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering. Vacuum, 2014. 103: p. 14-16.
26. Roffi, T.M., S. Nozaki, and K. Uchida, Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor. Journal of Crystal Growth, 2016. 451: p. 57-64.
27. Ashan, S.K., N. Ziaeifara, and M. Khosravi, Sol-Gel Synthesis of NiO Nanoparticles and Investigation on Adsorption Capacity in the Removal of Cr(VI) from Aqueous Solution. Oriental Journal of Chemistry, 2016. 32(1): p. 749-758.
28. Korosec, R.C. and P. Bukovec, Sol-gel prepared NiO thin films for electrochromic applications. Acta Chimica Slovenica, 2006. 53(2): p. 136-147.
29. Wu, M.S. and Y.P. Lin, Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries. Electrochimica Acta, 2011. 56(5): p. 2068-2073.
30. Wu, M.S. and C.H. Yang, Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Applied Physics Letters, 2007. 91(3): p. 3.
31. Chen, Z., et al., Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. Journal of Physics and Chemistry of Solids, 2013. 74(11): p. 1522-1526.
32. Cao, F., et al., Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application. Electrochimica Acta, 2013. 111: p. 86-91.
33. Yan, X., et al., Hydrothermal-synthesized NiO nanowall array for lithium ion batteries. Journal of Alloys and Compounds, 2013. 556: p. 56-61.
34. Needham, S.A., et al., Nickel oxide nanotubes: Synthesis and electrochemical performance for use in lithium ion batteries. Journal of Nanoscience and Nanotechnology, 2006. 6(1): p. 77-81.
35. Cao, F., et al., NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries. Materials Research Bulletin, 2013. 48(3): p. 1178-1183.
36. Wang, X.H., et al., NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9988-9990.
37. Xiao, H.H., et al., NiO nanosheet assembles for supercapacitor electrode materials. Progress in Natural Science-Materials International, 2016. 26(3): p. 271-275.
38. Nadeem, K., et al., Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles. Journal of Magnetism and Magnetic Materials, 2016. 417: p. 6-10.
39. Liu, H.R., et al., Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. Journal of Alloys and Compounds, 2008. 462(1-2): p. 356-361.
40. Estrada, W., A.M. Andersson, and C.G. Granqvist, ELECTROCHROMIC NICKEL-OXIDE-BASED COATINGS MADE BY REACTIVE DC MAGNETRON SPUTTERING - PREPARATION AND OPTICAL-PROPERTIES. Journal of Applied Physics, 1988. 64(7): p. 3678-3683.
41. Avendano, E., et al., Electrochromism in nickel oxide films containing Mg, Al, SiV, Zr, Nb, Ag, or Ta. Solar Energy Materials and Solar Cells, 2004. 84(1-4): p. 337-350.
42. Avendano, A., et al., Sputter deposited electrochromic films and devices based on these: Progress on nickel-oxide-based films. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007. 138(2): p. 112-117.
43. Green, S.V., et al., Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor. Thin Solid Films, 2012. 520(10): p. 3839-3842.
44. Sato, H., et al., TRANSPARENT CONDUCTING P-TYPE NIO THIN-FILMS PREPARED BY MAGNETRON SPUTTERING. Thin Solid Films, 1993. 236(1-2): p. 27-31.
45. Marrani, A.G., et al., Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films. Acs Applied Materials & Interfaces, 2014. 6(1): p. 143-152.
46. Guziewicz, M., et al., Hydrogen Sensing Properties of Thin NiO Films Deposited by RF Sputtering. Procedia Engineering, 2012. 47: p. 746-749.
47. Zhang, X.J., et al., Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010. 3(9): p. 643-652.
48. Xia, X.H., et al., Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011. 21(3): p. 671-679.
49. Huang, X.H., et al., Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries. Journal of the Electrochemical Society, 2008. 155(6): p. A438-A441.
50. Awais, M., et al., Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells. Surface & Coatings Technology, 2010. 204(16-17): p. 2729-2736.
51. Chen, W., et al., Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2017. 7(19): p. 8.
52. Zhang, J.Y., et al., Electronic and transport properties of Li-doped NiO epitaxial thin films (vol 6, pg 2275, 2018). Journal of Materials Chemistry C, 2018. 6(15): p. 4326-4326.
53. Ben Amor, M., et al., Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications. Materials Science in Semiconductor Processing, 2014. 27: p. 994-1006.
54. Kim, D.S. and H.C. Lee, Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film. Journal of Applied Physics, 2012. 112(3): p. 4.
55. Carter, C.B. and M.G. Norton, Point Defects, Charge, and Diffusion, in Ceramic Materials: Science and Engineering, C.B. Carter and M.G. Norton, Editors. 2013, Springer New York: New York, NY. p. 187-207.
56. Taylor, M.A., et al., Structural, electronic, and hyperfine properties of pure and Ta-doped m-ZrO2. Physical Review B, 2012. 85(15): p. 11.
57. Reddy, C.V., et al., Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceramics International, 2018. 44(6): p. 6940-6948.
58. Renuka, L., et al., A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes. Journal of Alloys and Compounds, 2017. 695: p. 382-395.
59. Asadikiya, M., et al., Phase diagram for a nano-yttria-stabilized zirconia system. Rsc Advances, 2016. 6(21): p. 17438-17445.
60. Lai, Y.S., H.H. Lu, and Y.H. Su, High-Efficiency Water-Splitting Solar Cells with Low Diffusion Resistance Corresponding to Halochromic Pigments Interfacing with ZrO2. Acs Sustainable Chemistry & Engineering, 2017. 5(9): p. 7716-7722.
61. Lai, Y.S., F. Pan, and Y.H. Su, Firefly-like Water Splitting Cells Based on FRET Phenomena with Ultrahigh Performance over 12%. Acs Applied Materials & Interfaces, 2018. 10(5): p. 5007-5013.
62. Suciu, C., et al., Sol-gel production of zirconia nanoparticles with a new organic precursor. Chemical Engineering Science, 2006. 61(24): p. 7831-7835.
63. Ramachandran, M., et al., Facile Synthesis and Characterization of ZrO2 Nanoparticles via Modified Co-Precipitation Method. Journal of Nanoscience and Nanotechnology, 2018. 18(1): p. 368-373.
64. Liu, X.-L., et al., Solvothermal synthesis and characterization of ZrO2 nanostructures using zirconium precursor. Materials Letters, 2010. 64(14): p. 1591-1594.
65. Behbahani, A., S. Rowshanzamir, and A. Esmaeilifar, Hydrothermal Synthesis of Zirconia Nanoparticles from Commercial Zirconia. Procedia Engineering, 2012. 42: p. 908-917.
66. Vildanova, M.F., et al., Nanostructured ZrO2-Y2O3-Based System for Perovskite Solar Cells. Doklady Physical Chemistry, 2019. 484: p. 36-38.
67. Shimizu, K.I., et al., Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sensors and Actuators B-Chemical, 2008. 130(2): p. 707-712.
68. Soon, G., et al., Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 2016. 42(11): p. 12543-12555.
69. Yao, X.J., et al., Enhancing the deNO(x) performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019. 369: p. 46-56.
70. Suda, M.Y.a.H., Hydrothermal Processing of Hydroxyapatite: Past, Present, and Future, in: Hydroxyapatite and Related Materials CRC Press, Inc, 1994: p. 45–72.
71. Walton, R.I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 2002. 31(4): p. 230-238.
72. Chai, H., et al., Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic. Materials Research Bulletin, 2012. 47(12): p. 3947-3951.
73. Cao, S.K., et al., Hydrothermal synthesis of NiO nanobelts and the effect of sodium oxalate. Materials Letters, 2015. 156: p. 25-27.
74. Emin, D., OPTICAL-PROPERTIES OF LARGE AND SMALL POLARONS AND BIPOLARONS. Physical Review B, 1993. 48(18): p. 13691-13702.
75. Charpentier, C., Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to microcristalline silicon solar cells. Plasma Physics 2012.
76. Dubey, P., et al., The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. Rsc Advances, 2018. 8(11): p. 5882-5890.
77. Pan, S.S., et al., Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. Journal of Materials Chemistry A, 2015. 3(21): p. 11437-11443.
78. Gelderman, K., L. Lee, and S.W. Donne, Flat-band potential of a semiconductor: using the Mott-Schottky equation. Journal of Chemical Education, 2007. 84(4): p. 685-688.
79. Firat, Y.E. and A. Peksoz, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochimica Acta, 2019. 295: p. 645-654.
80. Huang, H., et al., Polaron Disproportionation Charge Transport in a Conducting Redox Polymer. Journal of Physical Chemistry C, 2017. 121(24): p. 13078-13083.
81. Mishra, S., et al., Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing. Nanoscale Research Letters, 2018. 13: p. 7.
82. Lin, L.Y., et al., Synthesis of carbon fiber@nickel oxide nanosheet core-shells for high-performance supercapacitors. Rsc Advances, 2015. 5(102): p. 84238-84244.
校內:2024-08-01公開