簡易檢索 / 詳目顯示

研究生: 馬唯瑄
Ma, Wei-Xuan
論文名稱: 管間距對板鰭管熱交換器之熱傳特性的數值與實驗研究
Numerical and Experimental Study on The Effect of The Distance between Tubes on Plate Finned Tube Heat Exchanger
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 逆算法CFD模擬多管板鰭管式熱交換器混合對流自然對流
外文關鍵詞: Inverse scheme, Numerical simulation, Plate finned tube heat exchanger, Heat transfer characteristics
相關次數: 點閱:82下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以三維CFD軟體配合逆算法及實驗溫度來求得多管板鰭式熱交換器於矩形流道的熱流特性,探討入口風速、鰭片間距及加熱管間的距離之影響。由於空氣流經板鰭管式熱交換器時會產生複雜三維流動,使得鰭片上的熱傳係數非均勻分布,故劃分數個子區域並設定其熱傳係數為常數,使用差分法搭配最小平方法,進行逆向求解,以取得逆算之鰭片熱傳參數;本文利用CFD軟體求得溫度場、流場及熱傳參數,輔以實驗數據與逆算結果對紊流模式及網格劃分進行選用,確保模擬之可信度;結果顯示在自然對流中Zero equation模式所求得結果較為準確,混合對流之結果則顯示風速提升將改變紊流模式選用,在較高速時,Enhanced Realizable k-ε比RNG k-ε紊流模式更符合逆算結果;在本研究參數範圍內,隨風速加快、間距增大及加熱管管距增加會使熱傳係數提升,對應各參數變化之趨勢也會有所不同。

    This study uses a hybrid method of computational fluid dynamics (CFD) and inverse heat conduction analysis (IHCA) combined with experimental temperatures to investigate the plate finned tube heat exchangers with two horizontal tubes located in a channel. The effects of parameters such as fin pitch, inlet air velocity and tube location are considered. Since the heat transfer coefficient on the fin is not uniform due to the complex three-dimensional air-flow flows through the plate-fin and tube heat exchanger, the fin is divided into several sub-regions and the heat transfer coefficient in each sub-regions is assumed to be a constant. Later, the inverse method applies finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. Furthermore, how to choose the appropriate flow model and the effect of grid points are also investigated. Velocity, temperature and heat transfer coefficient distributions of the fin are determined using the CFD software. More accurate results can be obtained if the heat transfer coefficient is closed to the inverse results and matches the experimental data. The results reveal that the zero-equation turbulence model can be applied to determine more accurate results than other flow models for natural convection. Also, it is found that enhanced realizable k-ε turbulence model is more suitable for higher inlet velocity than RNG k-ε for mixed convection. Finally, with the increase of inlet velocity, fin spacing and distance of tubes, the heat transfer coefficient increases.

    目錄 摘要 II Extended Abstract III 誌謝 XI 目錄 I 表目錄 III 圖目錄 VI 符號說明 IX 第 1 章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的與方法 6 1-4 本文架構 7 第 2 章 逆算法之理論與建構過程 9 2-1 簡介 9 2-2 物理模型與對應邊界 10 2-3 鰭片之差分方程組 13 2-4 逆向熱傳導問題 16 第 3 章 實驗操作與逆算結果 19 3-1 簡介 19 3-2 實驗設備 21 3-3 實驗組別與步驟 26 第 4 章 三維CFD軟體模擬 29 4-1 簡介 29 4-2 基本假設 30 4-3 計算區域之邊界條件 31 4-3-1 混合對流計算區域之邊界條件 32 4-3-2 自然對流計算區域之邊界條件 33 4-4 流動模式之統御方程組 35 4-4-1 Zero-equation紊流模式 35 4-4-2 RNG k-ε紊流模式 36 4-4-3 Realizable k-ε紊流模式 38 4-4-4 近壁處理方法 40 4-5 求解程序與策略分析 43 4-5-1 紊流模式測試 46 4-5-2 網格測試 57 第 5 章 結果與討論 63 5-1鰭片於混合對流之變化趨勢 64 5-2鰭片於自然對流之變化趨勢 88 第 6 章 結論與建議 103 6-1 綜合結論 103 6-2 建議與未來發展 105 參考文獻 107   表目錄 表 3 1鰭片試件之尺寸 22 表 3 2工作風扇GF-B205H1之數據 23 表 3 3本文實驗參數設定 26 表 4 1本文各案例紊流模式選用一覽表 49 表 4 2對應自然對流下,加熱管排列間距Lt = 27.3 mm、S = 15 mm,不 50 表 4 3對應自然對流下,加熱管排列間距Lt =42 mm、S = 15 mm,不同紊流模式數值結果與量測溫度及逆算結果的比較 51 表 4 4對應自然對流下,加熱管排列間距Lt =63 mm、S = 15 mm,不同紊流模式數值結果與量測溫度及逆算結果的比較 52 表 4 5對應混合對流下,加熱管排列間距Lt =31.5 mm、S = 15 mm、 53 表 4 6對應混合對流下,加熱管排列間距Lt =63 mm、S = 15 mm、 54 表 4 7對應混合對流下,加熱管排列間距Lt =31.5 mm、S = 15 mm、 55 表 4 8對應混合對流下,加熱管排列間距Lt =63 mm、S = 15 mm、 56 表 4 9對應Lt = 31.5 mm、S = 15 mm、Va = 1 m/s、TOA = 329.28 K、TOB = 327.44 K、Tꝏ = 296.45 K、Nzx=33及Nzy=39 、Nzf及Nza對鰭片之數值結果比較 59 表 4 10 對應Lt = 31.5 mm、S = 15 mm、Va = 5 m/s、TOA = 308.00 K、TOB = 311.56 K、Tꝏ = 296.97 K、Nzx=33及Nzy=39 、Nzf及Nza對鰭片之數值結果比較 60 表 5 1 方型鰭片在 =27.3 mm及Va = 1 m/s,不同S下實驗溫度與模擬結果 69 表 5 2 方型鰭片在 =27.3 mm及Va = 5 m/s,不同S下實驗溫度 與模擬結果 70 表 5 3 方型鰭片在 =31.5 mm及Va = 1 m/s,不同S下實驗溫度 與模擬結果 71 表 5 4 方型鰭片在 = 31.5 mm及Va = 5 m/s,不同S下實驗溫度 與模擬結果 72 表 5 5 方型鰭片在 = 42 mm及Va = 1 m/s,不同S下實驗溫度與模擬結果 73 表 5 6方型鰭片在 = 42 mm及Va = 5 m/s,不同S下實驗溫度與模擬結果 74 表 5 7 方型鰭片在 = 63 mm及Va = 1 m/s,不同S下實驗溫度與模擬結果 75 表 5 8 方型鰭片在 = 63 mm及Va = 5 m/s,不同S下實驗溫度與模擬結果 76 表 5 9方型鰭片於自然對流、S=15 mm且加熱管為水平同線排列下,不同管距的實驗溫度之逆向預測與模擬結果 92 表 5 10方型鰭片於自然對流、S=15 mm且加熱管為垂直同線排列下,不同管距的實驗溫度之逆向預測與模擬結果 93   圖目錄 圖 2 1鰭片幾何形狀與參數示意圖 12 圖 2 2鰭片邊界編號對照 13 圖 2 3溫度量測點及子區域示意圖 14 圖 3 1多管板鰭管式熱交換器與流道之實驗裝置 20 圖 3 2矩形外殼尺寸示意圖 20 圖 3 3模擬板鰭管式熱交換器之實驗配置圖與設備名稱 21 圖 3 4溫度擷取設備產品實體圖 25 圖 3 5風速計AM-4202產品實體 25 圖 4 1板鰭管式熱交換器之半對稱模型 34 圖 4 2 自然對流區計算區域之最小空間 34 圖 4 3平板發展之紊流模型分區 40 圖 4 4壁面函數方法與近壁面模型方法示意圖 42 圖 4 5熱流模擬軟體ANSYS Icepak 15.0操作流程 44 圖 4 6 板鰭管式熱交換器非連續性網格的劃分 45 圖 4 7在管壁周圍的網格劃分 61 圖 4 8在不同截面之外部流場的網格劃分 62 圖 5 1 混合對流下,對應不同加熱管距,h̅值隨S之變化 77 圖 5 2 混合對流下,對應不同鰭片間距,h̅值隨L_t之變化 78 圖 5 3 鰭片在L_t=63 mm及Va = 1 m/s,不同S於x=0溫度等位圖 79 圖 5 4鰭片在L_t=31.5 mm及Va = 1 m/s,鰭片表面溫度等位圖 80 圖 5 5 鰭片在Va = 1 m/s及S=15 mm,鰭片表面溫度等位圖 81 圖 5 6鰭片在L_t= 42mm及S=15 mm,不同Va於z=0.015m溫度等位圖 82 圖 5 7 鰭片在L_t=27.3mm及S=15 mm,不同Va於x=0溫度等位圖 83 圖 5 8 鰭片在Va = 1 m/s及S=15 mm,不同L_t於z=0.008m流線圖 85 圖 5 9 鰭片在Va = 5 m/s及S=15 mm,不同L_t於z=0.008 m流線圖 87 圖 5 10混合對流下,對應不同同線排列方式,h̅值隨L_t 之變化 94 圖 5 11自然對流、加熱管水平同線排列下,不同管距之鰭片於z=0.0155m溫度等位圖 95 圖 5 12自然對流、不同流道下,鰭片在L_t=42 mm,於z=0.0155m 96 圖 5 13自然對流、加熱管垂直同線排列下,不同管距之鰭片於z=0.0155m溫度等位圖 97 圖 5 14 自然對流、加熱管水平同線排列下,不同管距之鰭片於z=0.008m流線圖 98 圖 5 15 自然對流、不同流道下,鰭片在L_t=42 mm於z=0.008m流線圖 99 圖 5 16自然對流、加熱管垂直同線排列下,不同管距之鰭片於z=0.008 流線圖 100 圖 5 17 自然對流、加熱管水平同線排列下,不同管距之鰭片於x=0 101 圖 5 18 自然對流、不同流道下,鰭片在L_t=42 mm於x=0溫度等位圖 102

    參考文獻
    [1] S. Yildiz, H. Yuncu, An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer, Int. J.Heat Mass Transfer vol.40 (2004) 239-251
    [2] N. Kayansayan, Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection, Exp. Therm. Fluid Sci. vol.7 (1993) 177-188.
    [3] R. Sajedi, M. Taghilou, M. Jafari, Experimental and numerical study on the optimal fin numbering in an external extended finned tube heat exchanger, Appl. Therm. Eng. vol.83 (2015) 139-146.
    [4] Y. Qiu, M. Tian, Z. Guo, Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber, Int. J. Heat Mass Transfer, vol.49 (2013) 405-412.
    [5] M. Yaghoubi, M. Mahdavi, An investigation of natural convection heat transfer from a horizontal cooled finned tube, Exp. Heat Transfer vol.26 (2013) 343-359.
    [6] 王永康、張潔,ANSYS Icepak電子散熱基礎教程,第2版,北京,電子工業出版社,2019。
    [7] R. Romero-Mendez, M. Sen, K.T. Yang and R. McClain, Effect of fin spacing on convection in a plate fin and tube exchanger, Int. J. Heat Mass Transfer, vol. 43, pp. 39-51, 2000.
    [8] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp. 53-62, 1993.
    [9] H.T. Chen, Y.S, Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer 100 (2016) 320-331.
    [10] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 378-392.
    [11] H.T. Chen, Y.L. Hsieh, P.C. Chen, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, Int. J. Heat Mass Transfer 127 (2018) 541-554.
    [12] M.N. Özişik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, 2000.
    [13] F.E.M. Saboya, E.M. Sparrow, Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol.96 (1974) 265-272.
    [14] T.V. Jones, C.M.B. Russell, Efficiency of rectangular fins, SME/AIChE National Heat Transfer Conference, Orlando, Florida (1980 ) 27-30.
    [15] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, Performance of One and Two-row Tube and Plate Fin Heat Exchangers, ASME J. Heat Transfer, vol.106 (1984) 627-632.
    [16] R.L. Webb, “Principle of Enhanced Heat Transfer”, Wiley, New York (1994) 125-153.
    [17] C.H. Huang, I.C. Yuan, H. Ay, A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.46 (2003) 3629-3638.
    [18] C.H. Huang, I.C. Yuan, H. Ay, An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.52 (2009) 3057-3066.
    [19] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.48 (2005) 2697-2707.
    [20] H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.49 (2006) 3034-3044.
    [21] H.T. Chen, W.L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacing, Int. J. Heat Mass Transfer, vol.50 (2007) 1750-1761.
    [22] H.T. Chen, J.R. Lai, Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.50 (2012) 45-57.
    [23] G.D. Raithby, K.G.T. Hollands, Natural convection, Chap. 4, in: W.M. Rohsenow, J.P. Hartnett, Y.I. Cho (Eds.), Handbook of Heat Transfer, third ed., McGraw-Hill, 1998. Chap. 4.
    [24] B. Watel, S. Harmand and B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME Int. J., Ser. B, vol. 42, pp. 56-64, 1999
    [25] C.W. Lu, J.M. Huang, W.C. Nien and C.C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion Management, vol. 52, pp. 1638-1643, 2011.
    [26] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47, pp. 1953-1964, 2004.
    [27] M. Ashjaee and T.Yousefi, Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays, Heat Transfer Engineering, vol.28, pp. 460-471,2007.
    [28] S. Narayan, A.K. Singh and A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, Int. J. Heat Mass Transfer, vol.109 , pp. 278-292, 2017.
    [29] Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28, pp. 137-144, 1998.
    [30] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski and C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp. 1510-1520, 1992.
    [31] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
    [32] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3, pp. 269-289, 1974.
    [33] 邱毓絜,環狀鰭管式熱交換器之熱傳特性的數值與實驗研究,國立成功大學機械工程學系,碩士論文,2016。
    [34] 張耀倫,H型單管板鰭管式熱交換器的混合對流熱流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
    [35] 林詠翔,具不同管徑之板鰭管式熱交換器的熱傳特性研究,國立成功大學機械工程學系,碩士論文,2016。
    [36] 林珮瑜,管位置對並列式板鰭管熱交換器之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2018。
    [37] 陳品君,具各種圓管排列之板鰭管式熱交換器的熱傳特性研究, 國立成功大學機械工程學系,碩士論文,2015。

    下載圖示 校內:2023-07-10公開
    校外:2023-07-10公開
    QR CODE