| 研究生: |
馬唯瑄 Ma, Wei-Xuan |
|---|---|
| 論文名稱: |
管間距對板鰭管熱交換器之熱傳特性的數值與實驗研究 Numerical and Experimental Study on The Effect of The Distance between Tubes on Plate Finned Tube Heat Exchanger |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 逆算法 、CFD模擬 、多管板鰭管式熱交換器 、混合對流 、自然對流 |
| 外文關鍵詞: | Inverse scheme, Numerical simulation, Plate finned tube heat exchanger, Heat transfer characteristics |
| 相關次數: | 點閱:82 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以三維CFD軟體配合逆算法及實驗溫度來求得多管板鰭式熱交換器於矩形流道的熱流特性,探討入口風速、鰭片間距及加熱管間的距離之影響。由於空氣流經板鰭管式熱交換器時會產生複雜三維流動,使得鰭片上的熱傳係數非均勻分布,故劃分數個子區域並設定其熱傳係數為常數,使用差分法搭配最小平方法,進行逆向求解,以取得逆算之鰭片熱傳參數;本文利用CFD軟體求得溫度場、流場及熱傳參數,輔以實驗數據與逆算結果對紊流模式及網格劃分進行選用,確保模擬之可信度;結果顯示在自然對流中Zero equation模式所求得結果較為準確,混合對流之結果則顯示風速提升將改變紊流模式選用,在較高速時,Enhanced Realizable k-ε比RNG k-ε紊流模式更符合逆算結果;在本研究參數範圍內,隨風速加快、間距增大及加熱管管距增加會使熱傳係數提升,對應各參數變化之趨勢也會有所不同。
This study uses a hybrid method of computational fluid dynamics (CFD) and inverse heat conduction analysis (IHCA) combined with experimental temperatures to investigate the plate finned tube heat exchangers with two horizontal tubes located in a channel. The effects of parameters such as fin pitch, inlet air velocity and tube location are considered. Since the heat transfer coefficient on the fin is not uniform due to the complex three-dimensional air-flow flows through the plate-fin and tube heat exchanger, the fin is divided into several sub-regions and the heat transfer coefficient in each sub-regions is assumed to be a constant. Later, the inverse method applies finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. Furthermore, how to choose the appropriate flow model and the effect of grid points are also investigated. Velocity, temperature and heat transfer coefficient distributions of the fin are determined using the CFD software. More accurate results can be obtained if the heat transfer coefficient is closed to the inverse results and matches the experimental data. The results reveal that the zero-equation turbulence model can be applied to determine more accurate results than other flow models for natural convection. Also, it is found that enhanced realizable k-ε turbulence model is more suitable for higher inlet velocity than RNG k-ε for mixed convection. Finally, with the increase of inlet velocity, fin spacing and distance of tubes, the heat transfer coefficient increases.
參考文獻
[1] S. Yildiz, H. Yuncu, An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer, Int. J.Heat Mass Transfer vol.40 (2004) 239-251
[2] N. Kayansayan, Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection, Exp. Therm. Fluid Sci. vol.7 (1993) 177-188.
[3] R. Sajedi, M. Taghilou, M. Jafari, Experimental and numerical study on the optimal fin numbering in an external extended finned tube heat exchanger, Appl. Therm. Eng. vol.83 (2015) 139-146.
[4] Y. Qiu, M. Tian, Z. Guo, Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber, Int. J. Heat Mass Transfer, vol.49 (2013) 405-412.
[5] M. Yaghoubi, M. Mahdavi, An investigation of natural convection heat transfer from a horizontal cooled finned tube, Exp. Heat Transfer vol.26 (2013) 343-359.
[6] 王永康、張潔,ANSYS Icepak電子散熱基礎教程,第2版,北京,電子工業出版社,2019。
[7] R. Romero-Mendez, M. Sen, K.T. Yang and R. McClain, Effect of fin spacing on convection in a plate fin and tube exchanger, Int. J. Heat Mass Transfer, vol. 43, pp. 39-51, 2000.
[8] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp. 53-62, 1993.
[9] H.T. Chen, Y.S, Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer 100 (2016) 320-331.
[10] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 378-392.
[11] H.T. Chen, Y.L. Hsieh, P.C. Chen, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, Int. J. Heat Mass Transfer 127 (2018) 541-554.
[12] M.N. Özişik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, 2000.
[13] F.E.M. Saboya, E.M. Sparrow, Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol.96 (1974) 265-272.
[14] T.V. Jones, C.M.B. Russell, Efficiency of rectangular fins, SME/AIChE National Heat Transfer Conference, Orlando, Florida (1980 ) 27-30.
[15] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, Performance of One and Two-row Tube and Plate Fin Heat Exchangers, ASME J. Heat Transfer, vol.106 (1984) 627-632.
[16] R.L. Webb, “Principle of Enhanced Heat Transfer”, Wiley, New York (1994) 125-153.
[17] C.H. Huang, I.C. Yuan, H. Ay, A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.46 (2003) 3629-3638.
[18] C.H. Huang, I.C. Yuan, H. Ay, An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.52 (2009) 3057-3066.
[19] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.48 (2005) 2697-2707.
[20] H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.49 (2006) 3034-3044.
[21] H.T. Chen, W.L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacing, Int. J. Heat Mass Transfer, vol.50 (2007) 1750-1761.
[22] H.T. Chen, J.R. Lai, Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.50 (2012) 45-57.
[23] G.D. Raithby, K.G.T. Hollands, Natural convection, Chap. 4, in: W.M. Rohsenow, J.P. Hartnett, Y.I. Cho (Eds.), Handbook of Heat Transfer, third ed., McGraw-Hill, 1998. Chap. 4.
[24] B. Watel, S. Harmand and B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME Int. J., Ser. B, vol. 42, pp. 56-64, 1999
[25] C.W. Lu, J.M. Huang, W.C. Nien and C.C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion Management, vol. 52, pp. 1638-1643, 2011.
[26] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47, pp. 1953-1964, 2004.
[27] M. Ashjaee and T.Yousefi, Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays, Heat Transfer Engineering, vol.28, pp. 460-471,2007.
[28] S. Narayan, A.K. Singh and A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, Int. J. Heat Mass Transfer, vol.109 , pp. 278-292, 2017.
[29] Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28, pp. 137-144, 1998.
[30] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski and C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp. 1510-1520, 1992.
[31] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
[32] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3, pp. 269-289, 1974.
[33] 邱毓絜,環狀鰭管式熱交換器之熱傳特性的數值與實驗研究,國立成功大學機械工程學系,碩士論文,2016。
[34] 張耀倫,H型單管板鰭管式熱交換器的混合對流熱流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
[35] 林詠翔,具不同管徑之板鰭管式熱交換器的熱傳特性研究,國立成功大學機械工程學系,碩士論文,2016。
[36] 林珮瑜,管位置對並列式板鰭管熱交換器之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2018。
[37] 陳品君,具各種圓管排列之板鰭管式熱交換器的熱傳特性研究, 國立成功大學機械工程學系,碩士論文,2015。