簡易檢索 / 詳目顯示

研究生: 蔡承翔
Tsai, Cheng-Hsiang
論文名稱: 強迫性購買者執行控制網絡與抑制迴路的功能性斷連
Functional disconnection of the executive and inhibitory networks in compulsive buyers
指導教授: 龔俊嘉
Kung, Chun-Chia
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 59
中文關鍵詞: 功能性造影強迫性購物執行控制網絡
外文關鍵詞: fMRI, Compulsive Buying, Executive Control Network (ECN)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過功能性磁振造影 (functional Magnetic Resonance Imaging, fMRI) 探討強迫性購買者 (Compulsive Buyers, CB) 與非強迫性購買者 (Non-Compulsive Buyers, NCB) 在購物衝動與渴望情境下的神經機制差異。研究採用「渴望任務」和「購物決策任務」進行實驗,發現CB組不僅購買數量顯著更高,亦更容易被激發高渴望。同時, CB組的背外側前額葉皮質 (Dorsolateral Prefrontal Cortex, dlPFC) 活化程度顯著低於NCB組,暗示其執行控制網路 (Executive Control Network, ECN) 可能出現缺陷 (Osaka et al., 2004;Friedman et al., 2022)。動態因果建模 (Dynamic Causal Modeling, DCM) 進一步揭示,CB組在購買時,前扣帶皮層 (Anterior Cingulate Cortex, ACC) 向 dlPFC 傳遞的「衝突監控訊號」顯著減弱 (Botvinick et al., 2001),導致其難以調整過度購買的行為。此外,心理生理交互作用分析 (Psychophysiological interaction, PPI) 證實,CB組的 dlPFC 與廣泛的抑制及自我參照網路之間存在功能性斷連。綜合以上,本研究支持CB在渴望及購物上的失控,並進一步指出行為上的失控不僅是單一腦區的異常,更可能是源自於整體神經網路之間的訊息斷連。

    This study investigated the differential neural mechanisms underlying shopping impulsivity and craving between Compulsive Buyers (CB) and Non-Compulsive Buyers (NCB) using functional Magnetic Resonance Imaging (fMRI). The experimental paradigm incorporated a "craving task" and a "shopping decision task." Findings revealed that the CB group exhibited a significantly higher purchase quantity and greater ease of generating high craving levels. Furthermore, the CB group showed significantly lower activation in the Dorsolateral Prefrontal Cortex (dlPFC) compared to the NCB group, suggesting a potential impairment in the Executive Control Network (ECN) (Osaka et al., 2004; Friedman et al., 2022). Dynamic Causal Modeling (DCM) analysis further demonstrated that the "conflict monitoring signal" transmitted from the Anterior Cingulate Cortex (ACC) to the dlPFC during purchasing was significantly attenuated in the CB group (Botvinick et al., 2001), contributing to their difficulty in regulating excessive buying behavior. Additionally, Psychophysiological Interaction (PPI) analysis confirmed a functional disconnect between the dlPFC and widespread inhibitory and self-referential networks in the CB group. Collectively, these findings support the notion of compromised control over craving and shopping in CB, suggesting that behavioral dyscontrol may not stem solely from the abnormality of a single brain region but rather from disrupted connectivity across integral neural networks.

    Abstract i 摘要 ii 致謝 iii Table of Contents iv List of Figures v List of Tables vi Introduction 1 Methods 5 2.1 Experimental Design 5 2.1.1 Participants 5 2.1.2 Experimental Stimuli 6 2.1.3 Experimental Procedure 7 2.2 Imaging Data Parameters and Preprocessing 8 2.2.1 Imaging Data Collection 8 2.2.2 Imaging Data Preprocessing 8 2.3 Data Analysis Methods 9 2.3.1 Behavioral Data Analysis 9 2.3.2 Functional Brain Imaging Data Analysis 10 Results 15 3.1 Sample Structure 15 3.2 Behavioral Results 16 3.3 Shopping Task: General Linear Model (GLM) Results 18 3.4 Dynamic Causal Modeling (DCM) Results 20 3.4.1 Craving Task: DCM Results 20 3.4.2 Shopping Task: DCM Results 21 3.6 Shopping Task: Psychophysiological Interaction (PPI) Results 22 3.6.1 dlPFC functional connectivity under purchase conditions 22 Conclusion 24 References 31 Appendix 39

    Adamczyk, G. (2021). Compulsive and compensative buying among online shoppers: An empirical study. PLOS ONE, 16(6), e0252563. https://doi.org/10.1371/journal.pone.0252563
    Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185. https://doi.org/10.1016/j.tics.2013.12.003
    Bak, S., Jeong, Y., Yeu, M., & Jeong, J. (2022). Brain–computer interface to predict impulse buying behavior using functional near-infrared spectroscopy. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22653-8
    Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463. https://doi.org/10.1038/nn1584
    Bernal-Rusiel, J. L., Atienza, M., & Cantero, J. L. (2010). Determining the optimal level of smoothing in cortical thickness analysis: A hierarchical approach based on sequential statistical thresholding. NeuroImage, 52(1), 158–171. https://doi.org/10.1016/j.neuroimage.2010.03.074
    Blain, A., Thirion, B., & Neuvial, P. (2022). Notip: Non-parametric true discovery proportion control for brain imaging. NeuroImage, 260, 119492. https://doi.org/10.1016/j.neuroimage.2022.119492
    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295x.108.3.624
    Brown, M. R. G., Benoit, J. R. A., Juhás, M., Dametto, E., Tse, T. T., MacKay, M., Sen, B., Carroll, A. M., Hodlevskyy, O., Silverstone, P. H., Dolcos, F., Dursun, S. M., & Greenshaw, A. J. (2015). fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents. Frontiers in Systems Neuroscience, 9. https://doi.org/10.3389/fnsys.2015.00124
    Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004
    Chen, F., He, Q., Han, Y., Zhang, Y., & Gao, X. (2018). Increased BOLD Signals in dlPFC Is Associated With Stronger Self-Control in Food-Related Decision-Making. Frontiers in Psychiatry, 9. https://doi.org/10.3389/fpsyt.2018.00689
    Chen, P., Wang, J., Tang, G., Chen, G., Xiao, S., Guo, Z., Qi, Z., Wang, J., & Wang, Y. (2024). Large-scale network abnormality in behavioral addiction. Journal of Affective Disorders, 354, 743–751. https://doi.org/10.1016/j.jad.2024.03.034
    Colombo, B., Balzarotti, S., & Mazzucchelli, N. (2016). The influence of the dorsolateral prefrontal cortex on attentional behavior and decision making. A t-DCS study on emotionally vs. functionally designed objects. Brain and Cognition, 104, 7–14. https://doi.org/10.1016/j.bandc.2016.01.007
    De Vries, E. L. E., Fennis, B. M., Bijmolt, T. H. A., Ter Horst, G. J., & Marsman, J.-B. C. (2018). Friends with benefits: Behavioral and fMRI studies on the effect of friendship reminders on self-control for compulsive and non-compulsive buyers. International Journal of Research in Marketing, 35(2), 336–358. https://doi.org/10.1016/j.ijresmar.2017.12.004
    Donnald W. B. (2007) Areview of compulsive buying disorder. World Psychiatry, 6(1), 14-18.
    Eliyahu, S., Rahamim, S., Natan, N., & Weinstein, A. M. (2025). Impulsivity and compulsivity in compulsive buying. Frontiers in Psychiatry, 16. https://doi.org/10.3389/fpsyt.2025.1665182
    Friedman, N. P., & Robbins, T. W. (2021). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(1), 72–89. https://doi.org/10.1038/s41386-021-01132-0
    Friston K. J., Litvak V., Oswal A., Razi A., Stephan K. E., Wijk B. C. M., Ziegler G., Zeidman P. (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage, 128, 413-431. https://doi.org/10.1016/j.neuroimage.2015.11.015
    Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7
    Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. NeuroImage, 34(1), 220–234. https://doi.org/10.1016/j.neuroimage.2006.08.035
    Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652–669. https://doi.org/10.1038/nrn3119
    Grant, J. E., & Chamberlain, S. R. (2014). Impulsive action and impulsive choice across substance and behavioral addictions: Cause or consequence? Addictive Behaviors, 39(11), 1632–1639. https://doi.org/10.1016/j.addbeh.2014.04.022
    Hester, R., & Garavan, H. (2004). Executive Dysfunction in Cocaine Addiction: Evidence for Discordant Frontal, Cingulate, and Cerebellar Activity. The Journal of Neuroscience, 24(49), 11017–11022. https://doi.org/10.1523/jneurosci.3321-04.2004
    Huang, F., & Guo, W. (2023). Rise of Mental Sub-Health Consumers: Examining the Compulsive Buying Behavior in the Post-COVID-19 Era. Sage Open, 13(4). https://doi.org/10.1177/21582440231219589
    Huang, Y., Mohan, A., De Ridder, D., Sunaert, S., & Vanneste, S. (2018). The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18471-y
    Hubert, M., Hubert, M., & Mariani, M. M. (2023). Cue‐reactivity to brand logos of consumers with a compulsive buying tendency: A consumer neuroscience perspective. Psychology & Marketing, 41(3), 677–692. https://doi.org/10.1002/mar.21946
    Jameel, A., Khan, S., Alonazi, W., & Khan, A. (2024). Exploring the Impact of Social Media Sites on Compulsive Shopping Behavior: The Mediating Role of Materialism. Psychology Research and Behavior Management, Volume 17, 171–185. https://doi.org/10.2147/prbm.s442193
    Jo, H., Chen, C.-Y., Chen, D.-Y., Weng, M.-H., & Kung, C.-C. (2020). A brain network that supports consensus-seeking and conflict-resolving of college couples’ shopping interaction. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74699-1
    Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303(5660), 1023–1026. https://doi.org/10.1126/science.1089910
    Li, Z., He, Q., Elhai, J. D., Montag, C., & Yang, H. (2025). Neural mechanisms of behavioral addiction: An ALE meta-analysis and MACM analysis. Journal of Behavioral Addictions, 14(1), 18–38. https://doi.org/10.1556/2006.2024.00082
    Lo, H. Y. & Kung, C. C. (2024). Getting Hooked on Buying: a Neurobiological Perspective on Compulsive Buying Behavior (Report No. NSTC 113-2635-H-005-002-MY2). National Science and Technology Council.
    Lubman, D. I., Yücel, M., & Pantelis, C. (2004). Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction, 99(12), 1491–1502. https://doi.org/10.1111/j.1360-0443.2004.00808.x
    Maraz, A., Griffiths, M. D., & Demetrovics, Z. (2016). The prevalence of compulsive buying: a meta‐analysis. Addiction, 111(3), 408–419. https://doi.org/10.1111/add.13223
    Masharipov, R., Korotkov, A., Medvedev, S., & Kireev, M. (2022). Evidence for non-selective response inhibition in uncertain contexts revealed by combined meta-analysis and Bayesian analysis of fMRI data. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14221-x
    Mei, B., Tao, Q., Dang, J., Niu, X., Sun, J., Zhang, M., Wang, W., Han, S., Zhang, Y., & Cheng, J. (2024). Meta-analysis of structural and functional abnormalities in behavioral addictions. Addictive Behaviors, 157, 108088. https://doi.org/10.1016/j.addbeh.2024.108088
    Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
    Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
    Nori, R., Zucchelli, M. M., Piccardi, L., Palmiero, M., Bocchi, A., & Guariglia, P. (2022). The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic. Behavioral Sciences, 12(8), 260. https://doi.org/10.3390/bs12080260
    Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: an fMRI study based on individual differences. NeuroImage, 21(2), 623–631. https://doi.org/10.1016/j.neuroimage.2003.09.069
    Panidi, K., Vorobiova, A. N., Feurra, M., & Klucharev, V. (2022). Dorsolateral prefrontal cortex plays causal role in probability weighting during risky choice. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18529-6
    Peiris, S., Tobia, M. J., Smith, A., Grun, E., Elyan, R., Eslinger, P. J., Yang, Q. X., & Karunanayaka, P. (2024). Neural correlates of chocolate brand preference: A functional MRI study. Journal of Neuroimaging, 34(4), 415–423. https://doi.org/10.1111/jon.13203
    Peng, Z., Jia, Q., Mao, J., Luo, X., Huang, A., Zheng, H., Jiang, S., Ma, Q., Ma, C., & Yi, Q. (2025). Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction. Frontiers in Psychiatry, 15. https://doi.org/10.3389/fpsyt.2024.1439727
    Rachubińska, K., Cybulska, A. M., Szylińska, A., Kupcewicz, E., Ćwiek, D., Walaszek, I., & Grochans, E. (2024). Psychosocial Functioning of Individuals at Risk of Developing Compulsive Buying Disorder. Journal of Clinical Medicine, 13(5), 1339. https://doi.org/10.3390/jcm13051339
    Radaelli, D., Sferrazza Papa, G., Vai, B., Poletti, S., Smeraldi, E., Colombo, C., & Benedetti, F. (2015). Fronto-limbic disconnection in bipolar disorder. European Psychiatry, 30(1), 82–88. https://doi.org/10.1016/j.eurpsy.2014.04.001
    Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The Role of the Medial Frontal Cortex in Cognitive Control. Science, 306(5695), 443–447. https://doi.org/10.1126/science.1100301
    Schommartz, I., Dix, A., Passow, S., & Li, S.-C. (2021). Functional Effects of Bilateral Dorsolateral Prefrontal Cortex Modulation During Sequential Decision-Making: A Functional Near-Infrared Spectroscopy Study With Offline Transcranial Direct Current Stimulation. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.605190
    Shi, L., Ren, Z., Feng, Q., & Qiu, J. (2024). Individualized prediction of online shopping addiction from whole-brain functional connectivity. Neuropsychologia, 202, 108967. https://doi.org/10.1016/j.neuropsychologia.2024.108967
    Solly, J. E., Hook, R. W., Grant, J. E., Cortese, S., & Chamberlain, S. R. (2021). Structural gray matter differences in Problematic Usage of the Internet: a systematic review and meta-analysis. Molecular Psychiatry, 27(2), 1000–1009. https://doi.org/10.1038/s41380-021-01315-7
    Szczepanski, S. M., & Knight, R. T. (2014). Insights into Human Behavior from Lesions to the Prefrontal Cortex. Neuron, 83(5), 1002–1018. https://doi.org/10.1016/j.neuron.2014.08.011
    Thomas, T. A., Laskowski, N. M., Lesener, T., Gusy, B., de Zwaan, M., & Müller, A. (2024). Prevention Approaches for Compulsive Buying-Shopping Disorder. SUCHT, 70(6), 347–356. https://doi.org/10.1024/0939-5911/a000897
    Trotzke, P., Starcke, K., Pedersen, A., & Brand, M. (2021). Dorsal and ventral striatum activity in individuals with buying‐shopping disorder during cue‐exposure: A functional magnetic resonance imaging study. Addiction Biology, 26(6). https://doi.org/10.1111/adb.13073
    Ünübol, B., Ünsalver, B. Ö., Ünübol, H., & Sayar, G. H. (2022). The prevalence and psychological relation of problem shopping: data from a large-scale sample from Turkey. BMC Psychology, 10(1). https://doi.org/10.1186/s40359-021-00711-6
    Vessel, E. A., Isik, A. I., Belfi, A. M., Stahl, J. L., & Starr, G. G. (2019). The default-mode network represents aesthetic appeal that generalizes across visual domains. Proceedings of the National Academy of Sciences, 116(38), 19155–19164. https://doi.org/10.1073/pnas.1902650116
    Vogel, B., Trotzke, P., Steins-Loeber, S., Schäfer, G., Stenger, J., de Zwaan, M., Brand, M., & Müller, A. (2019). An experimental examination of cognitive processes and response inhibition in patients seeking treatment for buying-shopping disorder. PLOS ONE, 14(3), e0212415. https://doi.org/10.1371/journal.pone.0212415
    Vogt, S., Hunger, A., Türpe, T., Pietrowsky, R., & Gerlach, A. L. (2014). Effects of mood induction on consumers with vs. without compulsive buying propensity: An experimental study. Psychiatry Research, 220(1–2), 342–347. https://doi.org/10.1016/j.psychres.2014.06.014
    Wadsley, M., & Ihssen, N. (2023). A Systematic Review of Structural and Functional MRI Studies Investigating Social Networking Site Use. Brain Sciences, 13(5), 787. https://doi.org/10.3390/brainsci13050787
    Wang, S., Tepfer, L. J., Taren, A. A., & Smith, D. V. (2020). Functional parcellation of the default mode network: a large-scale meta-analysis. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72317-8
    Weinstein, A., Mezig, H., Mizrachi, S., & Lejoyeux, M. (2015). A study investigating the association between compulsive buying with measures of anxiety and obsessive–compulsive behavior among internet shoppers. Comprehensive Psychiatry, 57, 46–50. https://doi.org/10.1016/j.comppsych.2014.11.003
    Xu, Y., Lin, Y., Yu, M., & Zhou, K. (2024). The nucleus accumbens in reward and aversion processing: insights and implications. Frontiers in Behavioral Neuroscience, 18. https://doi.org/10.3389/fnbeh.2024.1420028
    Zeng, X., Han, X., Gao, F., Sun, Y., & Yuan, Z. (2023). Abnormal structural alterations and disrupted functional connectivity in behavioral addiction: A meta-analysis of VBM and fMRI studies. Journal of Behavioral Addictions, 12(3), 599–612. https://doi.org/10.1556/2006.2023.00025
    Zhang, C., Brook, J. S., Leukefeld, C. G., De La Rosa, M., & Brook, D. W. (2017). Compulsive buying and quality of life: An estimate of the monetary cost of compulsive buying among adults in early midlife. Psychiatry Research, 252, 208–214. https://doi.org/10.1016/j.psychres.2017.03.007
    Zhang, R., & Volkow, N. D. (2019). Brain default-mode network dysfunction in addiction. NeuroImage, 200, 313–331. https://doi.org/10.1016/j.neuroimage.2019.06.036
    Zhu, M., Liu, M., Wang, X., Li, C., Ba, J., Liu, X., Yang, W., Wu, S., & Zhong, J. (2025). Functional magnetic resonance imaging in adolescent Internet gaming disorder: A systematic review. Addictive Behaviors Reports, 22, 100637. https://doi.org/10.1016/j.abrep.2025.100637

    QR CODE