| 研究生: |
張云瀚 Chang, Yun-han |
|---|---|
| 論文名稱: |
A384 鋁合金沖蝕磨耗特性之摩擦攪拌效應探討 Effect of Friction Stir Processing on the Particle Erosion Characteristics of A384 Al Alloy |
| 指導教授: |
陳立輝
Chen, Li-hui 呂傳盛 Lui, Truan-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 摩擦攪拌製程 、A384鋁合金 、沖蝕磨耗 |
| 外文關鍵詞: | erosion, friction stir process, A384 aluminum alloy |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A384鋁合金矽含量高,液相具有良好的流動性,鑄造性佳,且由於耐高溫、耐磨耗及輕量化之特性,適合應用於風力發電設備中的鼻錐罩和機艙罩。本研究以A384鋁合金經退火後(BM材)施以摩擦攪拌製程(FSP材)處理進行表面改質,並對BM材和FSP材進行人工時效熱處理,探討經摩擦攪拌製程對A384鋁合金的磨耗性質影響。
A384鋁合金之組織,除了-Al樹枝狀晶外,另包括共晶Si顆粒、τ1(Al9FeNi)、Al3CuNi和Q (Al5Cu2Mg8Si6)等晶出相。由顆粒沖蝕磨耗結果顯示,本實驗各條件之最大磨耗率皆發生於低角度之斜向沖蝕磨耗,代表A384鋁合金有典型的延性磨耗特徵。BM材的晶出相分佈集中,樹枝狀晶的主幹和枝臂形成軟質區,容易受到沖蝕顆粒的切削,磨耗阻抗較低。經摩擦攪拌製程改質後,硬度提升,晶出相細化且均勻分佈,降低脆性龜裂的現象發生,有助於改善A384鋁合金的磨耗性質,其中,亦發現在沖蝕溝槽附近有殘留和脆性破裂之共晶Si顆粒和Al3CuNi晶出相,推測此兩相為A384鋁合金中有助提升磨耗阻抗的第二相;而τ1(Al9FeNi)晶出相則容易受到沖蝕顆粒的切削而被沖蝕顆粒移除,增加材料的重量損失,推測τ1(Al9FeNi)晶出相為A384鋁合金中較不耐磨耗的晶出相。在人工時效熱處理後,硬度的提升,增加材料的變形阻抗,導致最大沖蝕磨耗率下降;且由於延性下降,最大磨耗率角度向右偏移角度5,表示有脆性破壞特徵之傾向。
Lightweight A384 aluminum alloy with high silicon content has good casting property for its good flowing of the liquid phase. Due to the advantages of high temperature and high erosion resistances, it can be used in the main carrier of the wind turbine. The as-cast A384 aluminum alloy with full-annealed treatment (represented as BM) was used as the base metal in this study. The BM specimens with friction stir processing (FSP) and peak aging treatment after FSP were used for studying the erosion properties of these specimens.
It is recognized that four segregate phases are exhibited in the casting A384 alloy, including Si particles, τ1 (Al9FeNi), Al3CuNi) and Q (Al5Cu2Mg8Si6) precipitate phases. According to the experimental results, all of the specimens show a higher erosion rate at the oblique erosion impact angle. This phenomenon reveals that a characteristic of the ductile erosion. The second phases are precipitated and aggregated within DAS in the BM specimens that are easily to form a soft zone. The increasing erosion rate is owing to the soft zone cut by the erodent. Instead, the erosion resistance is increased after FSP. The refined and uniformly distributed second phases, which are resulted from the FSP, can help to increase the hardness and further reduce the brittle fracture of the specimens. Si and Al3CuNi) phases are usually found near or end of the grooves with little fracture. But the τ1 (Al9FeNi) phase is easier to be removed by the erodent cutting. It can be inferred that Si and Al3CuNi) are useful to improve the erosion resistance of A384 aluminum alloy, but τ1 (Al9FeNi) phase is detrimental for the erosion resistance of A384 aluminum alloy. Moreover, the maximum erosion of the BM and FSP specimens after peak aging treatment will be decreased. The hardness and the deformation resistance of peak aged specimens are increased. They have a brittle fracture tendency that the maximum erosion rate transfers 5 degree with decreasing ductility.
1. N. Terao, “Beneficial Influence of Copper and Manganese Alloying Elements on the Mechanical Properties of Metallic Composite Materials Based on the Eutectic Al-5.7% Ni Alloy”, J. Mater. Sci., vol.20, 1985, pp. 4021-4026.
2. M. M. Farag, M. C. Flmings, “Structure and Strength of Al, Cu-Al3Ni Directionally Solidified Composites”, Metall. Trans., vol. 6A, 1975, pp. 1009-1015.
3. 劉中偉,『片狀石墨鑄鐵與鋁-系矽合金之矽砂沖蝕磨耗特性研究』,國立成功大學材料科學及工程研究所博士論文,民國87年。
4. 黃恢元主編,『鑄造手冊第三卷-鑄造非鐵合金』,機械工業出版社出版,北京,1993年初版,pp. 49-121。
5. “More about Aluminum and Aluminum Alloys”, McMaster-Car Supply Company, document 8975KAC, 2002.
6. J. E. Hatch, “Aluminum Properties and Physical Metallurgy”, American Society for Metals, Metals Park, Ohio, 1984, p.106.
7. T. B. Massalski, “Binary Alloy Phase Diagrams”, American Society for Matals, Metals Park, Ohio, 1984, vol. 1, p.165.
8. J. Qiao, X. Liu, X. Bian, X. Liu, “Relationship between Microstructures and Ontents of Ca/P in Near-Eutectic Al–Si Piston Alloys”, Mater. Lett., 2005, vol. 59, pp. 1790–1794.
9. R. X. Li, R. D. Li, Y.H. Zhao, L. Z. He, C. X. Li, H. R. Guan, Z. Q. Hu, “Age-hardening behavior of Cast Al–Si base Alloy”, Mater. Lett., 2004, vol. 58, pp. 2096–2101.
10. M. Hague, M. Malegue, “Effect of Process Variables on Structure and Properties of Aluminium–Silicon Piston Alloy”, J. Mater. Proc. Technol., 1998, vol. 77, pp. 122–128.
11. M. Zeren, “The Effect of Heat-Treatment on Aluminum-Based Piston Alloys”, Materials and Design, 2007, vol. 28, pp. 2511–2517.
12. N. Belov, D. Eskin, N. Avxentieva, “Constituent Phase Diagrams of the Al–Cu–Fe–Mg–Ni–Si System and Their Application to the Analysis of Aluminium Piston Alloys”, Acta. Mater., 2005, vol. 53, pp. 4709–4722.
13. Y. G. Nakagawa, “Mechanical Properties of Eutectic Composities in Mechanical Properties of Metallic Composites”, edited by S. Ochiai, M. Dekker, Inc., 1994, pp. 651-679.
14. N. A. Belov, D. G. Eskin, A.A. Aksenov, “Multicomponent Phase Diagrams: Applications for Commercial Aluminium Alloys”, Elsevier, Oxford, 2005.
15. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr and A.C. Nunes, “Flow patterns during friction stir welding ”, Materials Characterization, 2003, vol. 49, PP.95– 101.
16. W. D. Lockwood, A. P. Reynold , “Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior”, Materials Science and Engineering, 2003, vol. 339, pp.35-42.
17. Y. Li, L. E. Murr, J. C. McClure, “Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum”, Materials Science and Engineering, 1999, vol. 271, pp. 213–223.
18. Y. S. Sato, S. Hwan, C. Park, M. Michiuchi, H. Kokawa, “Constitutional Liquation during Dissimilar Friction Stir Welding of Al and Mg Alloys”, Scripta Materialia, 2004, vol. 50, pp. 1233–1236.
19. D. Liang, P. Korgul, H. Jones, “Composition and Solidification Microstructure Selection in the Interdendritic Matrix between Primary Al3Fe Dendrites in Hypereutectic Al2Fe Alloys”, Acta Materialia, 1996, vol. 44, pp. 2999-3004.
20. J. Q. Su, T. W. Nelson, C. J. Sterling, “Microstructure Evolution during FSW/FSP of High Strength Aluminum Alloys”, Materials Science and Engineering A, 2005, vol. 405, pp. 277-286.
21. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, Treatise on Materials Science and Technology, 13th ed., D. Scott, Academic Press, New York, 1979, pp. 287-319.
22. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, 1987, 1st ed, pp. 531-553.
23. I. Finnie, “Some Reflections on the Past and Future of Erosion”, Wear, vol. 186, 1995, pp. 1-10.
24. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, J. Materials, vol. 2, 1967, pp. 682-700.
25. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, New Jersey, 1988, pp. 209-287.
26. J. T. DeMasi-Marcin, D. K. Gupta, “Protective Coatings in the Gas Turbine Engine”, Surface and Coatings Technology, vol. 68-69, December 1994, pp. 1-9.
27. Y. I. Oka, H. Ohnogi, T. Hosokawa, M. Matsumura, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, vol. 203-204, 1997, pp.573-579.
28. I. Hussainova, “Microstructure and Erosive Wear in Ceramic-Based Composites. ”, Wear, 2005, vol. 258, pp.357–365.
29. I. Hussainova, “Some Aspects of Solid Particle Erosion of Cermets.”, Tribol Int, vol.34, 2001, pp. 89–93.
30. G.A. Sargent, P.K. Mehrotra, H. Conra, “Erosion: Prevention and Useful Applications.”, ASTM STP 664, W.F. Adler ed., ASTM, 1979, pp. 77-100.
31. 洪飛義,『矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響』,國立成功大學材料科學及工程研究所博士論文,民國91年。
32. L. C. Chang, I. C. Hsui, L. H. Chen, T. S. Lui, “A Study on Particle Erosion Behavior of Ductile Irons”, Scripta Materialia, vol. 52, 2005, pp. 609–613.
33. A.V. Levy, “ The Role of Plasticity in Erosion ”, in Proc. 5th Int. Conf. Erosion by Solid and Liquid Impact. Cambridge 1979, pp. (39-1) - (39-10).
34. T. Christman, P. G. Shewmon, “ Erosion of Strong Aluminum Alloy”, Wear, vol.52, 1979, pp. 57-70.
35. A.V. Levy, “The Solid Particle Erosion Behavior of Steel as a Function of Microstructure ”, Wear, vol. 68, 1981, pp. 269-288.
36. S. S. Aptekar, T. H. Kosel, “Erosion of White Cast Irons and Satellite”, in Wear of Materials 1985, K.C. Ludema ed., ASME, New York 1985, pp. 677-686.
37. L. Zhang, Y. Du, H. Xua, C. Tang, H. Chena, W. Zhan, “Phase Equilibria of the Al–Fe–Ni System at 850℃ and 627℃”, Journal of Alloys and Compounds, vol. 454, 2008, pp. 129–135.
38. E. Robert, Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, 3rd ed.
39. Y. Zhang, Y. S. Sato, H. Kokawa, S. H. C. Park, S. Hirano, “Microstructural Characteristics and Mechanical Properties of Ti–6Al–4V Friction Stir Welds”, Materials Science and Engineering A, vol. 485, 2008, pp. 448–455.