| 研究生: |
廖哲甫 Liao, Che-Fu |
|---|---|
| 論文名稱: |
空氣污染事件日次微米微粒水溶性離子組成
及氣相前驅物之研究 THe study of the relationship between Aerosol and precusors in Episode-day |
| 指導教授: |
蔡俊鴻
Tsai, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 241 |
| 中文關鍵詞: | 氣相前趨物 、事件日 、水溶性離子 、次微米粒徑 、溫濕度 |
| 外文關鍵詞: | submicron, relative humidity., precursors, Episode, water-soluble, temperature |
| 相關次數: | 點閱:190 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於94 年的4 月份到95 年的3 月份於大寮地區進行四次對粒
狀物水溶性離子和氣相前驅物採樣,研究目的為解析於大氣中次微米
(submicron)水溶性離子及氣相前驅物隨事件日發生而產生的差異,環境
因子對粒狀物事件日的影響,估量偵測極限遂訂定以12 小時為週期的採
樣。
粒狀物以MOUDI 和Nano-MOUDI 濾紙收集,而氣狀物部分則以
ADS 同心圓管柱吸附。於高屏重點污染地區大寮測站分別取得事件日
(PM10 濃度>125μg/m3)有效樣品11 組和非事件日(PM10 濃度<125μg/m3) 8
組樣品;以探討於事件日和非事件日條件下粒狀物次微米粒徑範圍(dp<1
μm)與氣相前驅物物種關係的差別。
實驗結果,事件日和非事件日主要分佈差異在於細粒徑範圍的
0.32~1.8μm 和粗粒徑的3.2~18μm 粒徑範圍之間;以日夜變化來看,粒徑
波峰在事件日夜間時主要增量波峰於1.0~1.8μm 之間,明顯與其他非事件
日日夜間與事件日日間細粒徑增量在0.56~1μm 為高峰不同;而粗粒徑則
同在3.2~18μm 粒徑範圍間。
事件日和非事件日增加重量濃度最多在2.5μm 以下的細粒徑範圍,
與硫酸根、硝酸根及銨根增量的表現相符;於細粒徑增量最多的粒徑範
圍0.32~1.8μm 對事件日和非事件日累積濃度值差異做相關矩陣得到硫酸
根、硝酸根及銨根相關係數R2 均高達0.9 以上。
事件日和非事件日分組相比,較高的前驅氣體物種為HNO2、HNO3
和SO2 而非事件日前驅氣體物種較高的則為HCl 和NH3,以所有前趨氣
體來看,濃度最高的為NH3,其次為SO2,餘前趨氣體大約在5ppb 以下;
並以離子與氣相前驅物做相關矩陣可知,離子與氣相前驅物多在細粒徑
(PM2.5)以下相關性較高。
iv
於事件日和非事件日對環境因子溫濕度做回歸曲線發現,濃度值差
異最大細粒徑粒徑範圍部分與濕度成正相關,與溫度成負相關,可能與
潮解現象有關;為了進一步探討事件日成因,於0.32~1.8μm 粒徑範圍,
以事件日和非事件日差異影響最大的硫酸根、硝酸根及銨根離子的質量
中數粒徑對溫濕度做回歸曲線分析;亦發現與濕度成正相關,其中以連
續採樣時段事件日日間的NH4
+(R2=0.8534)和SO4
2-(R2=0.8062)顯示與濕
度高度相關;和溫度比較,可發現與溫度無甚相關。
以前驅氣體的轉化指數SOR、NOR 對硫和氮的轉化做討論,SOR 於
粒徑分佈中,轉化均集中於0.1~1.8μm 之間,NOR 於粒徑分佈則顯示粗
細粒徑均有相當的轉化程度,唯在0.1~1.8μm 的粒徑範圍轉化程度於事件
日大於非事件日,夜間大於日間的顯示關係上有明顯的差異。
This study investigates the relationship between concentration of ambient
submicron and episode day .The experiments were implemented from
October, 2005 to March, 2006. Four times field sampling have been
conducted to collect particles with MOUDI and Nano-MOUDI system and
adsorb gas-phase components with Annular Denuder System (ADS) regard 12
hours as a cycle. The framework of research included three parts: (1) to
investigate the difference of concentration of aerosol and precursors between
PM episode days and the Non-episode day, (2) the relationship between
water-soluble inorganic ions and precursors, and (3) the daily variation of
submicron aerosol and precursors composition.
Test data shows that 0.32~1.8μm in fine fraction and 3.2~18μm in coarse
part have the most difference in size distribution between episode day and
non-episode day. Nocturnal size distribution in episode day has unique
phenomenon is the droplet mode between 1.0 to 1.8μm peak in fine fraction
and it is larger than the other three types: daytime of episode day, daytime of
non-episode day, and night time of non-episode. In coarse part, all peak are
show the same size range between 3.2~18μm. Correlation matrix is using to
evaluate the most relevant ions, which are sulfate, nitrate and ammonium, at
the increase mass concentration between episode day and non-episode day.
The results show R2 for all ions are higher than 0.9.
Gas phase pollutants, HNO2、HNO3 and SO2, are higher in PM episode
day and HCl、NH3 are not. In average, ammonia of ambient concentration is
the highest precursors, sulfur dioxide is the next, and others in average are
almost below 5 ppb. With our observation, while water-soluble ions
diameter in fine fraction (PM2.5) or even smaller are relevant the higher
relationship between gas phase pollutants. Considering the effect of
vi
atmosphere temperature and the relative humidity, the mass media diameter
grows up with higher relative humidity and decline as temperature raise in
fine fraction. Furthermore, the most critical size range observed in episode
day has the positive correlation with RH, especially in daytime. On the
contrary, temperature has low correlation or no relationship.
Considering the transformation of gas phase to particle, SOR and NOR as
indicator of sulfur and nitrogen, respectively. The result indicated that SOR
or NOR are both higher in size range 0.1~1.8 μm in the episode day than
Non-episode day. For this size fraction, nitrous has the most difference on
gas to particle transformation, the result is episode larger than non-episode,
and night time larger than daytime, respectively.
1. Acker, K., Mfller, D., Auel, R., Wieprecht, W., Kalag, D., “Concentrations of nitrous
acid, nitric acid, nitrite and nitrate in the gas and aerosol phase at a site in the
emission zone during ESCOMPTE 2001 experiment “ , Atmospheric Research ,74 :
507– 524. (2005)
2. Alastuey, A. Q., Castillo, X., Escudero, S., Avila, M., Cuevas A., Torres, E., Romero,
C., Exposito, P. M., Garcia, F., Diaz, O., J. P., Van Dingenen, R., Putaud, J. P.,
Characterisation of TSP and PM2.5 at Izana and Sta. Cruz de Tenerife (Canary Islands,
Spain) during a Saharan Dust Episode(July 2002)” , Atmospheric Environment 39 :
4715-4728 (2005)
3. Alastuey, A., Querol, X., Rodriguez, S., Plana, F., Lopez-Soler, A., Ruiz, C., Mantilla,
E., “Monitoring of atmospheric particulate matter around sources of secondary
inorganic aerosol” , Atmospheric Environment 38 : 4979-4992 (2004)
4. Albert, C., Jornd, H., Michael, J., Kleeman “Detection of Alkaline Ultrafine
Atmospheric Particles at Bakersfield, California” , Environmental Science and
Technology 35 : 2184-2190 (2001)
5. Andreae, M. O., Atlas, E., Harris, G. W., Helas, G., deKock,A., Koppmann, R.,
Maenhaut, W., Mano, S., Pollock, W. H., Rudolph, J., Scharffe, D., Schebeske, G.,
and Welling, M., “Methyl halide emissions from savanna fires in southern Africa, J.
Geophys” , J. Geophys. Res.-Atmos : 23 603–23 613, (1996)
6. Buchanan, C. M., Beverlandb, I. J., Heal, M. R., “The influence of weather-type and
long-range transportation on airborne particle concentrations in Edinburgh, UK” ,
Atmospheric Environment 36 : 5343–5354. (2002)
7. Chen, S. J., Hsieh, L. T., Tsai, C. C., Fang, G. C., “Characterization of atmospheric
PM10 and related chemical species in southern Taiwan during the episode days” ,
Chemosphere 53 : 29-41. (2003)
8. Chow, J. C., Watson, J. G., Lu, Z. Q., Lowenthal, D. H., Frazier, C. A., Solomon, P.
A., Thuillier, R. H., Magliano, K., “Descriptive analysis of PM2.5 and PM10 at
regionally representative locations during SJVAQS/AUSPEX” , Atmospheric
Environment 30 : 2079-2112 (1996)
9. Covert, D. S., Kapustin, V. N., Quinn, P. K., Bates, T. S., “New particle formation in
the marine boundary layer” , J. Geophys. Res. Atmos. 97 : 20,581-20,589. (1992)
10. Dockery, D.W., Pope III, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E.,
169
Ferris, B. G., Speizer, F. E., “An association between air pollution and mortality in six
US cities” , The New England Journal of Medicine 329 : 1573–1759. (1993)
11. Finlayson-Pitts, B. J., Pitts, Jr., “Chemistry of the Upper and Lower Atmosphere” ,
Academic Press, San Diego : 298–301. (2000)
12. Gerhard, L., Adrian, L., “Formatio n of Nitrate and Sulfate in the Plume of Berlin “ ,
Environ Sci & Pollut Res 12 (4) : 213 – 220 (2005)
13. Harrison, R. M., Pio, C. A., “Size differentiated composition of inorganic atmospheric
aerosols of both marine and polluted continental origin” , Atmospheric Enoironment
17 : 1733-1738. (1983)
14. Hering, S., Eldering, A., Seinfeld, J. H.,. “Bimodal Character of accumulation mode
aerosol mass distributions in Southern California.” , Atmospheric Environment 31,
1-11. (1997)
15. Hering, S. V., Stolzenburg, M. R., Hand, J. L., Kreidenweis, S. M., Taehyoung, L.,
Jeffrey, L., Collett, Jr., David, D., Mark, T.,. “Hourly concentrations and light
scattering cross sections for fine particle sulfate at Big Bend NationalPark” ,
Atmospheric Environment 37 : 1175–1183. (2003)
16. Hoppel, W. A., Frick, G. M.; Larson, R. E., “Effect of nonprecipitating clouds on the
aerosol size distribution in the marine boundary layer” , Geophys. Res. Lett. 13 :
125-128. (1986)
17. Hoppel, W. A., Frick, G. M., “Submicron aerosol size distributions measured over the
tropical and South Pacific.” , Atmospheric Enoironment. Part A 24: (1990) pp645-659
18. Hughes, L. S., Cass, G. R., Gone, J., Ames, M., Olmez, I., “Physical and chemical
characterization of atmospheric ultrafine particles in the Los Angeles area”
Environmental Science and Technology 32 : 1153–1161. (1998)
19. Jaakko, K.,.Mia, P., Ranjeet, S. S., Lakhu, L., Nutthida., K., Lia. F., Minna, R., Ki,
Erik, B.,Viel, Ø., Leiv, H. S., Bruce, D., Sandro, F., “Analysis and evaluation of
selected local-scale PM10 airpollution episodes in four European cities: Helsinki,
London, Milan and Oslo” , Atmospheric Environment 39 : 2759–2773 (2005)
20. John, W., Wall, S. M., Ondo, J. L., Winklmayr, W., “Modes in the size distributions of
atmospheric inorganic aerosol” , Atmospheric Environment 24A : 2349~2359. (1990)
170
21. Kang, C. M., Hak, S. L., Kang, B. W., ”Chemical characteristics of acidic gas
pollutants and PM2.5 species during hazy episodes in Seoul, South Korea” ,
Atmospheric Environment.38 : 4749-4760 (2004)
22. Karin, A., Gerald, S., Erika, B., “Nitrous and nitric acid measurements during the
INTERCOMP2000 campaign in Melpitz” , Atmospheric Environment 38 :
6497–6505 (2004)
23. Kitwiroon, L., Fragkou, M. R., K i, E. B.,Viel, Ø.,Leiv Ha° vard Slørdal, Bruce, D.,
Sandro, F., Analysis and evaluation of selected local-scale PM10 airpollution episodes
in four European cities: Helsinki, London, Milan and Oslo “ , Atmospheric
Environment 39 : 2759–2773 (2005)
24. Keene, W. C., A. A. P. Pszenny, D. J. Jacob, R. A. Duce, J. N. Galloway, J.
J.Schultz-Tokos, H. Sievering, and J. F. Boatman, ”The Geochemical Cycling
ofReactive Chloride through the Marine Troposphere” , Global Biogeochem. Cycles
126 : 407-430 (1990)
25. Keene, W. C., Khalil, M. A. K., Erickson III, D. J., McCulloch, A., Gradel T. E.,
Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P.,
Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C. M., Koropalov, V., Barrie,
L. A., “Composite global emissions of reactive chlorine from anthropogenicand
natural sources: Reactive Chlorine Emissions Inventory” , J. Geophys. Res., 104, D7 :
8429-8440. (1999)
26. Kenneth, J. O., Solomon, T. B., Roger, L. T., “Effect of ambient NH3 levels on PM2.5
composition in the Great Smoky Mountains National Park” , Atmospheric
Environment 39 4593–4606 (2005)
27. Kerminen, V. M., Wexler, A. S.,. “Growth laws for atmospheric aerosol particles: an
examination of the bimodality of the accumulation mode” , Atmospheric Environment
29 : 3263~3275. (1995)
28. Kiyoshi, M., Hiroshi, T., “Formation and Dissociation of atmospheric particulate
nitrate and chloride :an approach based on phase Equilibrium” , Atmospheric
Environment 30 : 639-648 (1996)
29. Konstantinos, E., Dimitrios B., ioannis C., Ziomas, I.,Colbeck and Nikolaos, m.,
“Atmospheric Aerosol and Gaseous species in Athens , Greece” , Atmospheric
Environment 32 : 2183-2191 (1998)
171
30. Lammel, G., Perner, D.,. “The atmospheric aerosol as a source of nitrous acid in the
polluted atmosphere” , Journal of Aerosol Science 19 : 1199–1202 (1988)
31. Lawrence, J. E.; “PM easurement of atmospheric formic and acetic acids: methods
evaluation and results from field syudies.” , Environmental Science and Technology
28 : 957-964 (1994)
32. Lightowlers , P. J., Cape , J. N.,. “Sources and fate of atmospheric HCl in the UK and
Western Europe” , Atmospheric Environment 22 : 7–15 (1988)
33. Lin, J. J., Lee, L. C., “Characterization of the concentration and distribution of urban
submicron (PM1) aerosol particles” , Atmospheric Environment 38 : 469-475 (2004)
34. Marcazzan , G. M., Valli, G., Vecchi, R., “Factors influencing mass concentration and
chemical composition of fine aerosols during a PM high pollution episode“ , The
Science of the Total Environment 298 : 65–79 (2002)
35. Meng, Z., Seinfeld, J. H.,. “On the source of the submicrometer droplet mode of urban
and regional aerosols” , Aerosol Science and Technology 20 : 253~265 (1994)
36. MiTsuhiro, M., Toshiichi, O., “Long Term measurements of atmospheric gaseous and
aerosol species using an annular denuder system in Nara, Japan” , Atmospheric
Environment 32 : 1419-1425 (1998)
37. Moya, M., Michel, G., Armando, B., “Diurnal variability of size-differentiated
inorganic aerosols and their gas-phase precursors during January and February of
2003 near downtown Mexico City “ , Atmospheric Environment 38 : 5651–5661
(2004)
38. Naoki, K., Yoshikado, H., Mizuno, T., Sakamoto, K., Soufuku, M., “Chemical forms
and sources of extremely high nitrate and chloride in winter aerosol pollution in the
Kanto Plain of Japan” , Atmospheric Environment 33 : 1745~1756 (1999)
39. Pope III, C. A., “Review: epidemiological basis for particulate air pollution health
standards.” , Aerosol Science and Technology 32 : 4–14 (2000)
40. Parmar, R. S., Satsangi, G. S., Kumari, M., Lakhani, A., Srivastava, S. S., Prakash, S.,
“Study of size distribution of atmospheric aerosol at Agra” , Atmospheric
Environment 35 : 693~702 (2001)
41. Robarge, W. P., Walker, J. T., McCulloch, R. B., Murray, G., “Atmospheric
concentrations of ammonia and ammonium at an agricultural site in the southeast
172
United States” , Atmospheric Environment 36 : 1661– 1674 (2002)
42. Sloane, C. S., Watson, J., Chow, J., Pritchett, L., Richards, L.W., “Size segregated
Þne particle measurements by chemical species and their impact on visibility
impairment in Denver.” , Atmospheric Environment 25A : 1013-1024. (1991)
43. Sjo¨ din, A., Ferm, M.,. “Measurements of nitrous acid in urban areas” , Atmospheric
Environment 19 : 985–992. (1985)
44. Stelson, A. W., Seinfeld, J. H., ”Relative humidity and pH dependence of the vapor
pressure of ammonium nitrate-nitric acid solutions at 25 degrees C” , Atmospheric
Environment 16 : 993-1000 (1982c)
45. Seinfeld, J. H.,. “Urban air pollution: state of science.” , Science 243 : 745–752.
(1989)
46. Tang I. N., Munkelwitz, H. R.,Aerosol Froth Studies-III , “ammonium Bisulfate
aerosols in a moist atmosphere” J. Aerosol Sci : 321-330 (1977)
47. Tang, I. N., Munkelwitz and Davis, J. G., “Aerosol Growth studies-IV. Phase
transformation of mixed salt aerosols in a moist atmosphere” , J. Aerosol Sci 9 :
505-511 (1978)
48. Tang, I. N., “Deliquescence properties and particle size change of hygroscopic
aerosols. In Generation of Aerosols and Facilities for Exposure Experiments (edited
by Willeke K.)” , Ann Arbour Science Publishers, Michigan. Chap 7 :153–167 (1980)
49. Trebs, F. X., Meixner, J., Slanina, R., Otjes, P., Jongejan and Andreae, M. O.,
“Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic
aerosol species at a rural site in the Amazon Basin” Atmos. Chem. Phys 4 : 967–987
(2004)
50. USEPA/600/P-95/001aF Air Quality Criteria for Particular Matter V1 April (1996)
51. USEPA 600/R-04/058 Particulate Matter Research Program Five Years of Progress
July (2004)
52. Waldman , J. M., Koutrakis, P., Allen, G. A., Thurston, G. D., Burton, R. M.,Wilson
W. E., “Human exposures to particle strong acidity. In: Phalen, R.F., Bates,
D.V.,eds.Proceedings of the colloquim on particulate air pollution and human
mortaility and morbidity, part II ;January (1994) ;Irvine , CA” , Inhalation Toxity 7
(1995)
53. Wayne, P., R., John, T., Walker., R. B., McCulloch, G. M., “Atmospheric
concentrations of ammonia and ammonium at an agricultural site in the southeast
173
United States” Atmospheric Environment 36 : 1661–1674 (2002)
54. Whitby, K. T., Cantrell, B. K., ”Atmospheric aerosols characteristics and
measurement. In” , ICESA, Las Vegas, NV, : 1~6 (1976)
55. Whitby, K. T., “The physical characteristics of sulfur aerosols”. Atmospheric
Environment. 12 : 135-159. (1978)
56. Wiedensohler, A. A., Covert, P. D., Heintzenberg, J., McMurry, P. H.,
“Intercomparison of four methods to determine size distributions of low-concentration
(~ 100 cm
-3
), ultrafine aerosols (3 < Dp<10nm) with illustrative data from the Artic” ,
Aerosol Sci. Technol. 21: 95-109 (1994)
57. Wilson, W. E., Suh, H. H., “Fine particles and coarse particles: concentration
relationships relevant to epidemiologic studies” , Journal of the Air and Waste
Management Association 47 : 1238–1249. (1997)
58. Ying, W., Guoshun, Z., Zhisheng, Y. S., “An Water–soluble part of the aerosol in the
dust storm season—evidence of the mixing between mineral and pollution aerosols” ,
Atmospheric Environment 39 : 7020–7029 (2005)
59. Yoshizumi, K. H., “A. Size distribution of ammonium nitrate and sodium nitrate in
atmospheric aerosol.” , Environmental Science and Technology 19 : 258-261 (1985)
60. Zhang, X. Q., McMurry, H., Hering, S. V., Casuccio, G. S., ”Mixing characteristics
and water content of submicronaerosols measured in Los Angeles and at the Grand
Canyon.” , Atmospheric Environment 27A : 1593–1607. (1993)
61. Zhuang, H ., Chan, C. K., Anthony, M. F .,Wexler, S., “Formation of nitrate and
non-sea-salt sulfate on coarse particles” , Atmospheric Environment 33 : 4223~4233
(1999)
62. 中華民國九十三年十月十三日行政院環境保護署環署空字第09300722
20號令修正發布第二條條文
63. 吳義林,「南部懸浮微粒超級測站監測成果 環境資料庫暨空氣品質監測系統建
置成果發表會」,B-119~B-131,(2005)
64. 李俊璋,「台北市空氣中懸浮微粒物理化學分析及學童肺功能之研究」,國立台
灣大學環境工程研究所碩士論文,(1982)
65. 李崇德、王弼正、李嘉蕙、黃明雄、張士昱,「台灣地區懸浮微粒空氣污染防制
及問題研究-東北季風下台北地區細微粒及其氣體前驅物特性分析」,13-15 (1997)
66. 洪春量、鄭曼婷、周韋均、蔣萬福,「春季中部地區懸浮微粒及酸鹼性氣體之特
性」,第二十二屆空氣污染控制技術研討會 (2005)
174
67. 林能暉、劉振榮、李崇德、嚴明证,「東亞地區空氣污染物跨國長程傳輸對台灣
地區之影響」,行政院環境保護署 (2000)
68. 林能暉、李崇德、王家麟,「區域大氣污染物監測與展望」,環境資料庫暨空氣
品質監測系統建置成果發表會 (2005)
69. 徐玉眉,「海鹽氣膠氯損失之研究」,國立台灣大學環境工程研究所碩士論文
(2000)
70. 張凱倫,「大氣奈米無機鹽類組成特性研究」,國立成功大學環境工程學系碩士
論文 (2004)
71. 郭育良、宋鴻樟,「空氣污染物與心臟疾患住院率及氣喘就醫率之相關性:本土
性指標污染物致急性病閾值之分析」,行政院國家科學委員會/環保署科技合作
研究計畫成果報告 (2000)
72. 陳德鈞、季研安、林肇信,「大氣污染化學」,科技圖書股份有限公司 台北市
35~44 (1993)
73. 陳穩至、吳義林,「高屏地區空氣品質不良原因之分析」,第十五屆空氣污染控
制技術研討會論文集 575~581 (1998)
74. 楊題羽,「都會區酸性氣膠特性研究」,國立交通大學環境工程與科學系碩士論
文 (1996)
75. 蔡春進,「都會區酸性氣膠的特性及採樣分析技術之研究」,行政院國家科學委
員會補助專題研究報告NSC86-2621-P009-001 (1997)
76. 蔡俊鴻、張立鵬,「我國長期空氣品質監測成果及展望」,環境資料庫暨空氣品
質監測系統建置成果發表會 (2005)
77. 蔡瀛逸、鄭曼婷,「高污染狀態下大氣二次氣膠組成研究」,第十五屆空氣污染
控制技術研討會 711~718 (1998)
78. 鄭尊仁、雷侑蓁,「疾病動物模式奈米微粒毒性探討」,永續發展科技與政策研
討會 (2003)
79. 蘇慧貞、江哲銘、李俊璋,「室內空氣品質標準草案及管制策略探討」,行政院
環境保護署研究計劃 (1999)
80. 蕭慧娟,「空氣污染概論」,空氣污染防治專責人員訓練教材 (1996)
校內:2016-07-31公開