| 研究生: |
黃奕璇 Huang, I-Hsuan |
|---|---|
| 論文名稱: |
鋼筋混凝土柱火害及震害後之鋼板包覆修復之研究 Seismic Repair of Post-Fire RC Columns Using Steel Jackets |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 鋼筋混凝土柱 、鋼板修復 、耐震性能 、遲滯迴圈 、反覆載重實驗 |
| 外文關鍵詞: | RC column, Pushover, Post-fire, Retrofit, Hysteresis loop |
| 相關次數: | 點閱:126 下載:54 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討鋼板包覆修復火害後之鋼筋混凝土柱,透過不同軸壓比進行靜態反覆載重實驗,了解於不同軸壓比下,鋼板修復試體前後耐震行為之差異。本研究採用之試體為內政部建築研究所委託國立成功大學之研究報告「火害後建築物之結構耐震性能評估(1/3)--鋼筋混凝土造與鋼構造構件火害後耐震性能研究」之火害後鋼筋混凝土柱構件之反覆載重試驗後三座試體。於前期研究中,三座試體之軸力加載分別為22.5tf (0.1fc′Ag)、45tf (0.2fc′Ag)及67.5tf (0.3fc′Ag),軸壓加載完成後根據CNS 12514-1之標準升溫曲線加熱,接著以相同軸力實施反覆載重實驗。實驗結束後本研究接手試體修復,將此三座單柱試體校正後進行鋼板修復,並以與前期實驗之相同軸力進行靜態反覆載重實驗。實驗結果顯示,(ㄧ) 隨軸壓比上升,其側向強度及初始勁度也越大,消能能力越好。由於CF2R柱身歪斜情況較嚴重,因此其包絡線明顯有強度偏向負向的現象。(二) 透過鋼板圍束修復火害後鋼筋混凝土柱對於峰值強度、初始勁度及位移韌性等力學性能皆有大幅度之提升,試體CF1R、CF2R及CF3R之峰值強度分別提升了1.43倍、1.57倍及1.68倍,初始勁度分別提升約2.19倍、2.88倍及2.94倍。而根據修復前後試體之遲滯迴圈中可發現修復後試體改善了火害後試體之迴圈束縮現象。
本研究透過兩項分析方式模擬鋼板修復火害後鋼筋混凝土柱,第一項分析方式參考賴瑞安[1]之火害後鋼筋混凝土修復之初探,透過XTRACT斷面分析軟體進行複合斷面之彎矩曲率分析,於結構分析軟體ETABS內設定參數後進行側推分析;第二項分析方式為評估火害後混凝土抗壓強度後計算全斷面等效抗壓強度,並參考林峻立[2]之分析方式輸入於臺灣結構耐震評估側推分析法TEASPA建立非線性鉸,最後設定勁度折減於ETABS內運行側推分析。將兩項分析曲線與實驗值比較,發現皆可適切模擬實驗結果,初始勁度之最大誤差分別約為8%及6%,而最大側力之最大誤差分別約為7%及4%。
This study investigated the post-fire reinforced concrete column members retrofitted by steel jackets. The quasi-static cyclic loading test was conducted under varying axial compression ratios to understand the difference in seismic behavior before and after retrofitting the columns using steel plates. Three specimens used in this study were from the research report of the National Cheng Kung University entrusted by the Institute of Architecture of the Ministry of the Interior, "Evaluation of the Structural Seismic Performance of Buildings After Fire Damage (1/3)--Research on the Seismic Performance of Reinforced Concrete and Steel Structural Members after Fire Damage". In the preliminary study, each specimen was preloaded in compression before being exposed to the standard heating curve of CNS 12514-1, and after the fire test was completed, the static cyclic loading test was conducted according to the same axial load. After the initial experiment, three-column specimens were adjusted and then retrofitted with steel plates, and a quasi-static cyclic loading test was conducted with the same axial load as the previous experiment. The experimental results show that (1) as the axial load ratios increase, the lateral force and initial stiffness are more significant, and the energy dissipation capacity is better. Since the specimen CF2R is more seriously skewed among the three test specimens, its envelope curve has the phenomenon that its strength has deviated in the -x direction. (2) The mechanical properties such as peak strength, initial stiffness, and displacement ductility of the post-fire specimens after retrofitting by the steel plate are significantly improved.
This study also proposes two analysis techniques of post-fire reinforced concrete column members retrofitted by steel plates. The first analysis method is to analyze the bending moment and curvature of the composite section through the cross-section analysis software XTRACT. After setting initial parameters in the structural analysis software ETABS, the pushover analysis is performed; the second analysis method is to evaluate the compressive strength of post-fire concrete and then calculate the equivalent compressive strength of the gross section and input it into Taiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA) to establish nonlinear hinges, and finally modify the stiffness reduction. The pushover analysis is performed using the ETABS program. Comparison among the two analysis results with the experimental values, it can be observed that the experimental results can be simulated appropriately. The maximum errors of the initial stiffness are about 8% and 6%, respectively, and the maximum errors of the maximum lateral force are about 7% and 4%, respectively.
[1] 賴瑞安,「鋼筋混凝土柱火害後之耐震性能分析與鋼板包覆修復初探」,國立成功大學土木工程研究所,臺南,2021。
[2] 林峻立,「鋼筋混凝土柱火害後之耐震行為曲線研究」,國立成功大學土木工程研究所,臺南,2021。
[3] 張雲妃,「火害後雙軸彎曲鋼筋混凝土柱之試驗與分析」,國立成功大學建築研究所,2006。
[4] European Committee for Standardization, “Eurocode 2: Design of concrete structures—Part 1–2: General rules—Structural fire design”, 2004.
[5] ACI Committee 216, “Guide for determining the fire endurance of concrete elements”, American Concrete Institute, 1994.
[6] Abrams, M. S., “Compressive strength of concrete at temperatures to 1600F”, Special Publication, 25, 33-58, 1971.
[7] 陳俊嘉,「火害後鋼筋混凝土短梁之斜壓桿件的有效抗壓係數研究」,國立成功大學土木工程研究所,臺南,2005。
[8] Cruz, Carlos R., “Elastic Properties of Concrete at High Temperatures,” Journal, PCA Research and Development Laboratories, V. 8, No. 1, pp. 37-45. Also, Research Department Bulletin No. 191, Portland Cement Association, 1966.
[9] Li, L.-y., & Purkiss, J., “Stress–strain constitutive equations of concrete material at elevated temperatures”, Fire Safety Journal, 40(7), 669-686, 2005.
[10] Tsai, W. Y., “Uniaxial compressional stress-strain relation of concrete,” Journal of Structural Engineering, Vol. 114, No. 9, pp.2133-2136, 1998.
[11] Stecich, J., Hanson, J. M., & Rice, P. F., “Bending and Straightening of Grade 60 Reinforcing Bars”, Concrete International, 6(8), 14-23, 1984.
[12] Edwards, W. T., & Gamble, W. L., “Strength of grade 60 reinforcing bars after exposure to fire temperatures”, Concrete International, 8(10), 17-19, 1986.
[13] 劉靖國,「高強度鋼筋混凝土梁火害後撓曲行為之研究」,國立臺灣科技大學工程技術研究所,臺北,1992。
[14] 陳舜田、林英俊、楊旻森,「火害後鋼筋混凝土桿件之扭力形為」,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院營建工程技術系,
臺北,1995。
[15] Brockenbrough, R. L., & Johnston, B. G., « USS steel design manual», 1968.
[16] 吳波、馬忠誠、歐進萍,「高温后钢筋混凝土柱抗震性能的试验研究」, 土木工程学报, 32(2), 53-58, 1999。
[17] 王元武,「不同受火方式后钢筋混凝土柱抗震性能的试验研究」,华侨大学,2017。
[18] 霍静思、楊鑫鑫、李智,「考虑初始荷载的火灾后RC 柱抗震性能」,建筑科学与工程学报, 36(5), 21-30, 2019。
[19] 邱至昱,「鋼筋混凝土構材火害後之簡化塑鉸模式」,國立成功大學土木工程研究所,臺南,2020。
[20] 趙文成等人,「鋼筋混凝土柱件火害後修補技術之研究」,MOIS 891003,內政部建築研究所研究計劃成果報告,臺北,2000。
[21] 李璧昀,「以環氧樹脂補強受高溫破壞混凝土之強度變化」,國立交通大學土木工程學系碩士班,2010。
[22] 林志明,「探討利用電化学再鹼化技術修復火害後鋼筋混凝土的效果」,建築學報(93), 41-53, 2015。
[23] Chinthapalli, H. K., Chellapandian, M., Agarwal, A., & Prakash, S., “Retrofitting of fire damaged RC columns”, Paper presented at the Proceedings of the 11th International Conference on Structures in Fire (SiF2020), 2020.
[24] Wang, L., & Su, R. K.-L., “Repair of fire-exposed preloaded rectangular concrete columns by post-compressed steel plates”, Journal of Structural Engineering, 140(3), 04013083, 2014.
[25] Al-Nimry, H. S., & Ghanem, A. M., “FRP confinement of heat-damaged circular RC columns”, International Journal of Concrete Structures and Materials, 11(1), 115-133, 2017.
[26] Moghtadernejad, N., Jamshidi, M., Maheri, M. R., & Keong, C. K., “Repair of post-heated short rectangular reinforced concrete columns with FRP jackets”, Structures, 2021.
[27] Liu, X., Gernay, T., Li, L.-z., & Lu, Z.-d., “Seismic performance of post-fire reinforced concrete beam-column joints strengthened with steel haunch system”, Engineering Structures, 234, 111978, 2021.
[28] Cai, Z., Liu, X., Wu, R., Li, L., Lu, Z., & Yu, K., “Seismic retrofit of large-scale interior RC beam-column-slab joints after standard fire using steel haunch system”, Engineering Structures, 252, 113585, 2022.
[29] Yaqub, M., & Bailey, C., “Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites”, Construction and Building Materials, 34, 457-469, 2012.
[30] 李其忠等人,「聚丙烯纖維自充填混凝土修復火害鋼筋混凝土柱在高溫中後之行為研究」,中國土木水利工程學刊, 26(2), 153-163, 2014。
[31] 黃震興,柯詩吟,「實體圓形RC橋柱鋼板包覆耐震補強試驗」,NCREE-01-023,2001。
[32] 張國鎮等人,「公路橋樑耐震能力評估及補強準則之研究」,NCREE-09-028,2009。
[33] 黃國倫,「老舊RC建築既有非韌性配筋柱包覆鋼板補強之研究」,內政部建築研究所自行研究報告,臺北,2010。
[34] 黃國倫,「既有建築RC柱乾式鋼板補強實驗研究」,內政部建築研究所自行研究報告,臺北,2018。
[35] Xiao, Y., & Wu, H., “Retrofit of reinforced concrete columns using partially stiffened steel jackets”, Journal of Structural Engineering, 129(6), 725-732, 2003.
[36] 邱一哲,「校舍建築構架式鋼板補強現地試驗與分析」,國立成功大學土木工程研究所,臺南,2008。
[37] Yang, X., Yuan, W., Chen, G., & Fan, L., “Seismic performance assessment and retrofit of rectangular bridge piers with externally encased circular steel jackets”, Paper presented at the conference proceedings, 12th world conference on earthquake engineering, 2000.
[38] Wang, L., Su, R., Cheng, B., Li, L., Wan, L., & Shan, Z., “Seismic behavior of preloaded rectangular RC columns strengthened with precambered steel plates under high axial load ratios”, Engineering Structures, 152, 683-697, 2017.
[39] Zhang, D., Li, N., Li, Z.-X., & Xie, L., “Rapid repair of RC bridge columns with prestressed stainless-steel hoops and stainless-steel jackets”, Journal of Constructional Steel Research, 177, 106441, 2021.
[40] 許元融,「輸電塔基採用擴頭鋼筋及續接器之可行性研究」,國立成功大學土木工程研究所,臺南,2021。
[41] Priestley, M. N., Seible, F., & Calvi, G. M., “Seismic Design and Retrofit of
Bridges”, John Wiley &Sons, Inc., 1996.