簡易檢索 / 詳目顯示

研究生: 鍾家軒
Zhong, Jia-xuan
論文名稱: 微控制器結合GPS與水深感測器之水下地貌量測系統整合開發
An underwater geological survey system by integrating microcontroller, GPS module and acoustic transducer
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 113
中文關鍵詞: 微控制器水聲感測器測深儀系統整合
外文關鍵詞: System integration, Underwater acoustic transducer, Micro-controller, Echo sounder
相關次數: 點閱:73下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為協助開發水下地貌量測系統;透過測得的水深與方位資訊,組成水下地貌資訊。在硬體方面,本文著重水深量測系統的整合與開發,使用LM1812晶片之驅動電路與市售TC-2111等水聲感測器,透過200kHz的超音波以探測水域深度。吾人先以電腦搭配資料擷取設備以及LabVIEW虛擬儀控程式,針對驅動電路的波形特性進行實驗與開發演算邏輯,後將演算邏輯轉移至以P8X32A微控制器為核心的系統上,故分別提出了「以電腦為基礎」及「以微控制器為基礎」的兩種不同的架構,並分別探討各硬體配置的特性、整合之間的關聯與其應用上的限制。軟體方面,提出了「加入遮罩」、「設立回波持續時間門檻」與「三次綜合分析」等策略以增強系統效能。此外,本系統亦整合了其他GPS接收器與SD記憶裝置,可將水域深度與量測位置的資訊結合,即時顯示在LCD螢幕上並儲存於SD卡中,故可將實驗記錄匯入電腦進行後處理分析,並以軟體繪製水下地貌。本研究之成果亦可提供未來水下載具之測距與避碰研究之基礎。

    The purpose of this study is to develop an underwater geological survey system by integrating a self-developed echo sounder and a global positioning system. In the hardware implementation, we take fully advantage of LM1812 from National Semi-conductor and TC-2111 transducer operating at 200kHz to build the echo sounder for detecting water depth. Data acquisition is first done by a PC based LabVIEW environment to understand the character of sound wave in water channel and to process the signal by the proposed algorithm in order to detect the depth of water. Later, the entire computer algorithm is transferred to the Parallax P8X32A microcontroller for system integration. For signal processing, we have proposed a series of ‘mask shading’, echo-duration threshold’ and ‘3-time majority’ computing algorithms to enhance the accuracy of the self-developed echo sounder. Finally, the echo sounder is integrated with a commercial type of GPS, a LCD display and a SD memory board where the experiment information for water depth and geological information can be saved for post-processing of the underwater terrain information. This work can also be used as an underwater acoustic detector while developing a collision avoidance system for an autonomous underwater vehicle.

    摘要 1 Abstract 2 誌謝 3 目錄 4 表目錄 8 圖目錄 9 符號 14 第一章 緒論 15 1.1 研究動機與目的 15 1.2 研究背景與文獻探討 17 1.2.1 研究背景 17 1.2.2 文獻探討 17 1.3 研究方法 19 1.4 本文架構 20 第二章 硬體架構配置 21 2.1 資料的組成元素 21 2.2 超音波感測器 23 2.2.1 超音波測深原理 23 2.2.2 選用規格與實務應用 25 2.3 超音波驅動電路 30 2.3.1 LM1812積體電路與其操作方式 30 2.3.2 驅動電路與感測器之間的阻抗匹配 34 2.3.3 其他市售錶頭 37 2.4 GPS衛星接收器之實務應用 39 2.5 以電腦為基礎的系統架構 41 2.5.1 虛擬儀控與DAQ量測設備 42 2.6 以微控制器為基礎的系統架構 44 2.6.1 微控制器P8X32A與主控制板 46 2.6.2 電源穩壓模組 47 2.6.3 USB模組 48 2.6.4 MAX232電路 49 2.6.5 LM324電路 52 2.6.6 SD卡讀寫電路 53 2.6.7 LCD模組 53 第三章 演算策略與軟體介面 55 3.1 加入遮罩 55 3.2 設立回波持續時間門檻 58 3.3 三次綜合分析 61 3.4 演算策略的功效 63 3.4.1 主要功效 63 3.4.2 應用限制 65 3.5 程式介面 68 3.5.1 LabVIEW介面 68 3.5.2 Propeller Tool 69 3.6 演算策略移轉至微控制器 71 第四章 實驗結果 78 4.1 水缸中進行測試 79 4.2 幾何擴散效應 81 4.2.1 造成原因及其算例 81 4.2.2 拖航水槽實驗 82 4.3 聲波透射問題 89 4.3.1 造成原因 89 4.3.2 比較不同介面之反射特性實驗 90 4.4 水庫實測 95 4.4.1 測試LM1812驅動電路 95 4.4.2 測試Depth 2100錶頭 97 4.5 以模擬數據測試微控制器 99 第五章 結論與建議 102 5.1 結論 102 5.2 未來發展與建議 104 5.2.1 水下地貌之量測工程 104 5.2.2 迷你水下載具之應用 106 參考文獻 109 自述 111

    1. Wikipedia維基百科. 系統 2008 [cited; Available from: http://zh.wikipedia.org/w/index.php?title=%E7%B3%BB%E7%B5%B1&variant=zh-hant.
    2. P. H. Milne, Underwater Acoustic Positioning Systems. 1983, Houston: Gulf Publishing Company.
    3. 馬英九團隊, 藍色革命 海洋興國, 馬英九、蕭萬長海洋政策. 2008.
    4. 陳巧茵, 小型自走車以超音波避障之研究, 工程科學系. 2002, 國立成功大學: 台南.
    5. 陳柏昌, 以超音波感測器於機器人環境地圖之建立, 工程科學系. 2007, 國立成功大學: 台南.
    6. D. Marioli, et al., Digital Time-of-Flight Measurement for Ultrasonic Sensors. IEEE Transactions on Instrumentation and Measurement, 1992. 41(1): p. 93-97.
    7. C. H. Cai and P. P. L. Regtien, Accurate Digital Time-of-Flight Measurement Using Self-Interference. IEEE Transactions on Instrumentation and Measurement, 1993. 42(6): p. 990-994.
    8. A. Heale and L. Kleeman. A Real Time DSP Sonar Echo Processor. in IEEE/RSJ International Conference on Intelligent Robots and Systems. 2000. Takamatsu.
    9. About Virtual Instrumentation. [cited; Available from: http://zone.ni.com/devzone/cda/tut/p/id/2964.
    10. 黃茂坤, 工業用超音波檢測實務彙編. 1996: 中船公司高雄總廠訓練中心.
    11. D. C. Giancoli, Physics for Scientists and Engineers 3rd ed. 2000: Prentice Hall.
    12. 劉金源, 水中聲學─水聲系統之基本操作原理. 2001, 台北市: 國立編譯館.
    13. W. S. Sternberger and L. R. L. Blanc, Short-Range Precision Navigation and Tracking System. IEEE Journal of Oceanic Engineering, 1978. 3(2): p. 48-51.
    14. Transducer TC2111 Datasheet, RESON Company.
    15. LM1812 Ultrasonic Transceiver Datasheet, National Semiconductor Company.
    16. A. B. Carlson, Circuits:Engineering Concepts and Analysis of Linear Electric Circuits. 2000: Brooks/Cole. 864.
    17. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice. 5th ed. 2004: Springer.
    18. G. W. Johnson and R. Jennings, LabVIEW graphical programming. 2006: McGraw-Hill.
    19. M. T. Nguyen, Design of an Active Acoustic Sensor System for an Autonomous Underwater Vehicle, in Engineering. 2004, University of Western Australia.
    20. 國立成功大學工學院, 工學溯源. 2004, 國立成功大學: 台南.

    下載圖示 校內:2010-08-28公開
    校外:2010-08-28公開
    QR CODE