簡易檢索 / 詳目顯示

研究生: 吳宗頤
Wu, Tsung-Yi
論文名稱: 水相合成銀系硒化物量子點及其近紅外光電感測器
Aqueous Synthesis of Silver-Based Selenide Quantum Dots for Near-Infrared Photodetector
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 半導體製程學位學程
Program on Semiconductor Manufacturing Technology
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 180
中文關鍵詞: 銀系量子點水相合成法近紅外光核殼量子點光電感測器
外文關鍵詞: Silver-based quantum dots, aqueous synthesis, near-infrared emission, core–shell quantum dots, photodetectors
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以環境友善之水相合成法,於常溫常壓條件下成功製備銀系硒化物量子點,包含Ag₂Se、AgInSe₂ 以及AgInSe₂/ZnSe 核殼量子點,並系統性探討合成參數,包含前驅物比例、溶液 pH 值、配體保護(TGA)濃度對其結構、光學性質及光電感測性能之影響。所合成之量子點展現可調控之能隙結構,使其光學吸收與發光特性同時涵蓋可見光(白光)與近紅外光波段。
    由光學量測結果顯示,Ag₂Se量子點之光致發光峰值可隨合成條件調整,發光波段涵蓋紅光至近紅外區域,顯示其具備近紅外光響應潛力。進一步於量子點表面成長 ZnSe 殼層形成 AgInSe₂/ZnSe 核殼結構後,可有效降低表面缺陷與非輻射復合中心,使光致發光強度相較於未包覆樣品提升約18%–30%,顯示殼層對載子侷限與表面鈍化具有顯著效果。
    在元件應用方面,本研究將上述所製之量子點於矽基板上製作異質結構光電感測器,並分別於白光與近紅外光照射條件下進行電性與光電量測。實驗結果顯示,三種量子點元件皆對白光與近紅外光具有明顯光電流響應,其中核殼量子點元件在兩種光源條件下皆展現較佳之光響應度與光探測率。在白光下最佳元件之光響應度可達12240 mA/W,光探測率達 9.095 × 1011 Jones,且在近紅外光下最佳元件之光響應度可達9120 mA/W,光探測率達 5.85 × 1011 Jones,顯示不只可見光下擁有低功耗光感測應用上的優勢,在近紅外光下同時也具一定的優勢。動態光響應量測亦顯示,核殼結構有助於縮短元件在白光與近紅外光照射下的上升與下降時間,改善整體響應速度。
    本研究成功建立一套低成本、低毒性且可重現之銀系量子點水相合成流程,並證實其在白光與近紅外光雙波段光電感測上的可行性,顯示其於未來多波段、低功耗光電感測元件中具有良好的應用潛力。

    In this study, silver-based selenide quantum dots, including Ag₂Se, AgInSe₂, and AgInSe₂/ZnSe core–shell structures, were successfully synthesized with an environmentally friendly aqueous method under ambient conditions. The effects of precursor ratio, solution pH, and ligand (thioglycolic acid, TGA) concentration on their structural and optical properties were systematically investigated. The synthesized quantum dots exhibit tunable bandgaps, enabling optical absorption and photoluminescence covering both the visible and near-infrared (NIR) spectral regions.
    The introduction of a ZnSe shell effectively passivates surface defects and suppresses non-radiative recombination, resulting in a photoluminescence enhancement of approximately 18%–30% compared with uncoated quantum dots. These results indicate improved carrier confinement and optical efficiency in the core–shell structure.
    For device applications, the quantum dots were integrated onto silicon substrates to fabricate heterojunction photodetectors. All devices exhibit clear photocurrent responses under both white light and NIR illumination, with the core–shell devices demonstrating superior responsivity and detectivity. The optimized device achieves a responsivity of 12,240 mA/W and a detectivity of 9.095 × 10¹¹ Jones under white light, while maintaining competitive performance under NIR illumination.
    Overall, this work demonstrates a low-cost, low-toxicity, and reproducible aqueous synthesis route for silver-based quantum dots and confirms their potential for dual-band visible and near-infrared photodetection applications.

    中文摘要 I 誌謝 XV 目錄 XVI 圖目錄 XXIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 原理 5 2-1 量子點之基本概念與物理特性 5 2-1-1 量子點之基本特性 6 2-1-2 量子點之晶體結構與材料組成 8 2-1-3 量子侷限效應(Quantum Confinement Effect)10 2-1-4 激子束縛能與載子動力學行為 13 2-2 量子點之光學性質 14 2-2-1 帶邊發射與缺陷相關發射 15 2-2-2 斯托克斯位移(Stokes Shift)16 2-2-3 施主-受主對(Donor–Acceptor Pair, DAP)與自由-束縛躍遷(Free-to-Bound Transition)17 2-4 量子點之合成方法 19 2-4-1 水相合成法(Aqueous-phase Synthesis Method)20 2-4-2 微波輔助合成法(Microwave-assisted Synthesis Method)21 2-4-3 核殼量子點之成長機制 22 2-5 銀系量子點於近紅外光之材料特性 24 2-5-1 硒化銀量子點(Ag₂Se Quantum Dots)24 2-5-2 銦摻雜硒化銀量子點(AgInSe₂ Quantum Dots)25 2-5-3 AgInSe₂/ZnSe 核殼量子點之能帶與界面特性 26 2-6 光電感測器之基本原理 28 2-6-1 光伏效應(Photovoltaic Effect, PVE)29 2-6-2 光電導效應(Photoconductive Effect, PCE)30 2-6-3 光閘效應(Photogating Effect, PGE)31 2-6-4 光電感測器關鍵性能指標(響應度、探測率與動態響應特性)32 第三章 實驗化學藥品及儀器 34 3-1 實驗化學藥品及材料 34 3-2合成實驗及製程儀器 34 3-2-1電磁加熱攪拌器 34 3-2-2 微量秤重天平 35 3-2-3 酸鹼值檢測器 36 3-2-4 可調式微量滴管 37 3-2-5 高速離心機 38 3-2-6 超音波震洗器 39 3-2-7 熱真空鍍膜系統 40 3-2-8 旋轉塗佈機 42 3-2-9紫外光臭氧清洗機 43 3-2-10烘箱 44 3-3 量測儀器 45 3-3-1 紫外光-可見光-近紅外光分光光譜儀 45 3-3-2 微拉曼及微光激發光譜儀 46 3-3-3 X光繞射儀 47 3-3-4 化學分析電子光譜儀 (XPS) 48 3-3-5 高解析場發射掃描穿透式電子顯微鏡 49 3-3-6 傅立葉紅外光譜 50 3-3-7電性量測系統 51 3-3-8 四點探針量測 52 3-3-9 APD-QE先進光感測器量子效率光學儀 53 3-3-10 短波截止濾光片(Short-Wave Cutoff Filter, SIGMAKOKI SCF-50S-80R,截止波長 800 ± 10 nm)56 第四章 實驗步驟 58 4-1量子點前驅物製備 58 4-1-1製備Ag2Se量子點前先準備以下前驅物(Precursor)以利實驗進行 58 4-1-2製備AgInSe2量子點前先準備以下前驅物(Precursor)以利實驗進行 59 4-1-3製備AgInSe2/ZnSe量子點前先準備以下前驅物(Precursor)以利實驗進行 59 4-2 量子點製備 60 4-2-1 Ag2Se量子點製備 60 4-2-2 AgInSe2量子點製備 61 4-1-3 AgInSe2/ZnSe量子點製備 62 4-3 光電感測器元件製程 63 4-3-1 基板清洗 63 4-3-2紫外線臭氧處理 64 4-3-3 量子點薄膜製備 65 4-3-4 光電感測器製程 66 4-3-5 量子點光電感測器元件 67 第五章 結果與討論 69 5-1 UV/Vis/NIR 吸收光譜圖分析 69 5-1-1 Ag₂Se二元量子點之酸鹼值對光學性能的影響 69 5-1-2 Ag₂Se二元量子點之Ag:Se濃度對吸收光譜的影響 71 5-1-3 Ag₂Se二元量子點之不同配體保護量(TGA)對吸收光譜的影響 72 5-1-4 AgInSe2三元量子點之酸鹼值對吸收光譜的影響 74 5-1-5 AgInSe2三元量子點之不同Ag:In:Se前驅物比例對吸收光譜之影響 76 5-1-6 AgInSe2三元量子點之不同配體保護量(TGA)對吸收光譜的影響 78 5-1-7 ZnSe結構與Zn-only修飾對AgInSe₂量子點吸收光譜之影響 80 5-2 光致發光光譜圖分析 82 5-2-1酸鹼值對Ag₂Se量子點光致發光光譜的影響 83 5-2-2 不同Ag:Se前驅物濃度比對Ag₂Se量子點光致發光行為的影響 85 5-2-3 不同配體保護量(TGA)對Ag₂Se量子點近紅外光致發光光譜的影響 87 5-2-4 酸鹼值對AgInSe₂量子點近紅外光致發光光譜的影響 89 5-2-5 不同Ag:In:Se前驅物比例對AgInSe₂量子點近紅外光致發光光譜的影響 91 5-2-6 不同配體保護量(TGA)對光致發光光譜的影響 93 5-2-7 核殼結構與Zn-only包覆對AgInSe₂量子點近紅外光光致發光特性的影響 95 5-2-8 ZnSe結構與Zn-only修飾對AgInSe₂量子點光致發光之影響 96 5-3 Ag2Se與AgInSe2與AgInSe2/ZnSe量子點晶相、元素、結構分析 98 5-3-1 XRD 晶相分析 98 5-3-2 Ag₂Se、AgInSe₂ 及 AgInSe₂/ZnSe TEM 分析 101 5-3-3 XPS元素分析 105 5-3-4 FTIR 分析 112 5-4 水相合成Ag₂Se 與AgInSe₂ 相關量子點特性分析 115 5-5白光與近紅外光照射下量子點光電感測器之電性比較 117 5-5-1 I-V 電壓電流量測分析 117 5-5-2光響應度(Responsivity, R)123 5-5-3 光探測率分析(Detectivity, D*)129 5-5-4元件開關響應特性分析(I–t Characteristics)133 第六章 結論與未來展望 142 第七章 參考文獻 144

    [1] Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. science, 271(5251), 933-937.
    [2] Brus, L. E. (1984). Electron–electron and electron‐hole interactions in small semiconductor crystallites. The Journal of Chemical Physics, 80(9), 4403–4409.
    [3] Efros, A. L., & Rosen, M. (2000). The electronic structure of semiconductor nanocrystals. Annual Review of Materials Science, 30, 475–521.
    [4] Klimov, V. I. (2000). Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. Journal of Physical Chemistry B, 104(26), 6112–6123.
    [5] Crooker, S. A., et al. (2002). Spectrally resolved dynamics of energy transfer in quantum dots. Physical Review Letters, 89, 186802.
    [6] Delerue, C., & Lannoo, M. (2004). Nanostructures: Theory and modelling. Springer.
    [7] Peng, X., et al. (2002). Shape control of CdSe nanocrystals. Nature, 404, 59–61.
    [8] Bilecka, I., & Niederberger, M. (2010). Microwave chemistry for inorganic nanomaterials synthesis. Chemical Reviews, 110(6), 3795–3812.
    [9] Reiss, P., Protière, M., & Li, L. (2009). Core/shell semiconductor nanocrystals. Small, 5(2), 154–168.
    [10] Dang, C., et al. (2012). Infrared colloidal quantum dots for optoelectronics. ACS Nano, 6(10), 8920–8929.
    [11] Tang, J., et al. (2011). Colloidal-quantum-dot photovoltaics using copper indium selenide nanocrystals. Nature Materials, 10, 765–771.
    [12] Li, L., et al. (2017). Highly luminescent AgInSe₂/ZnSe core/shell quantum dots. ACS Applied Materials & Interfaces, 9(11), 9714–9722.
    [13] Konstantatos, G., & Sargent, E. H. (2010). Nanostructured materials for photon detection. Nature Nanotechnology, 5, 391–400.
    [14] Zhang, F., et al. (2015). InP-based quantum dots for optoelectronic applications. Chemical Materials, 27(23), 7390–7400.
    [15] Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4, 710–711.
    [16] Liu, H., et al. (2020). Colloidal quantum dot photodetectors for infrared detection. Advanced Functional Materials, 30, 1908462.
    [17] Kayanuma, Y. (1988). Quantum-size effects of interacting electrons and holes in semiconductor microcrystals. Physical Review B, 38, 9797–9805.
    [18] Shen, H., et al. (2015). Surface chemistry of semiconductor quantum dots. Chemical Reviews, 116, 6163–6226.
    [19] Giansante, C., & Infante, I. (2017). Surface traps in colloidal quantum dots. Journal of Physical Chemistry Letters, 8, 5209–5215.
    [20] Chen, O., et al. (2013). Compact high-quality CdSe–CdS core–shell nanocrystals. Nature Materials, 12, 445–451.
    [21] Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 100, 468–471.
    [22] Hong, G., et al. (2012). In vivo fluorescence imaging with Ag₂S quantum dots. ACS Nano, 6, 4300–4309.
    [23] Pan, D., et al. (2011). CuInSe₂ nanocrystals: synthesis and optoelectronic properties. Journal of the American Chemical Society, 133, 15058–15061.
    [24] Deng, Z., et al. (2016). AgInSe₂/ZnSe core/shell quantum dots with enhanced luminescence. Nanoscale, 8, 9676–9684.
    [25] Konstantatos, G., et al. (2012). Hybrid graphene–quantum dot phototransistors. Nature Nanotechnology, 7, 363–368.
    [26] Rogach, A. L., et al. (2007). Aqueous synthesis of semiconductor nanocrystals. Journal of Physical Chemistry C, 111, 14628–14637.
    [27] Li, L., et al. (2011). Water-soluble semiconductor quantum dots: synthesis, properties, and applications. Chemical Reviews, 111, 6356–6402.
    [28] Zhang, Y., et al. (2012). Aqueous synthesis of high-quality semiconductor quantum dots. Advanced Materials, 24, 3839–3844.
    [29] Hong, G., et al. (2012). Near-infrared fluorescence imaging with Ag₂S quantum dots. ACS Nano, 6, 4300–4309.
    [30] Zhou, J., et al. (2014). Ag₂Se quantum dots for near-infrared photodetection. Advanced Materials, 26, 109–115.
    [31] Zhang, M., et al. (2017). NIR-emitting I–III–VI quantum dots. Journal of Materials Chemistry C, 5, 10118–10129.
    [32] Wang, Y., et al. (2019). Colloidal quantum dots for infrared optoelectronics. Chemical Society Reviews, 48, 1596–1631.
    [33] Rogalski, A. (2019). Infrared detectors: status and trends. Progress in Quantum Electronics, 68, 100228.
    [34] Chen, O., et al. (2013). Compact high-quality core–shell quantum dots. Nature Materials, 12, 445–451.
    [35] Reiss, P., et al. (2016). Core/shell semiconductor nanocrystals. Chemical Reviews, 116, 10731–10819.
    [36] Koppens, F. H. L., et al. (2014). Photodetectors based on quantum dots. Nature Nanotechnology, 9, 780–793.
    [37] Chen, Z., et al. (2018).Green synthesis of quantum dots in aqueous solution. Green Chemistry, 20, 5079–5090.
    [38] Wang, Y., et al. (2019). Aqueous synthesis of low-toxicity quantum dots for optoelectronics. Advanced Functional Materials, 29, 1900327.
    [39] Li, X., et al. (2021). Water-based synthesis of heavy-metal-free quantum dots. ACS Applied Materials & Interfaces, 13, 14862–14871.
    [40] Zhang, Q., et al. (2023). Environmentally friendly aqueous quantum dots for infrared optoelectronics. Journal of Materials Chemistry C, 11, 4120–4134.
    [41] Tang, X., et al. (2018). Colloidal Ag₂Se quantum dots for infrared optoelectronics. Advanced Materials, 30, 1704745.
    [42] Liu, W., et al. (2019). Near-infrared photodetectors based on Ag₂Se quantum dots. ACS Applied Materials & Interfaces, 11, 34188–34195.
    [43] Zhou, Y., et al. (2020). Ag-based quantum dots for broadband photodetection. Advanced Optical Materials, 8, 2000465.
    [44] Zhang, M., et al. (2022). Silver chalcogenide quantum dots for near-infrared optoelectronics. Chemical Society Reviews, 51, 3412–3440.
    [45] Pan, D., et al. (2019). Ternary I–III–VI quantum dots for infrared emission. Advanced Optical Materials, 7, 1801446.
    [46] Zhao, H., et al. (2020). AgInSe₂ quantum dots with tunable near-infrared emission. Journal of Physical Chemistry C, 124, 17645–17653.
    [47] Li, Y., et al. (2022). Heavy-metal-free I–III–VI quantum dots for NIR photodetection. ACS Nano, 16, 9234–9245.
    [48] Wang, J., et al. (2024). AgInSe₂ quantum dots for broadband and near-infrared photodetectors. Nano Energy, 115, 108741.
    [49] Reiss, P., et al. (2019). Core–shell semiconductor nanocrystals: surface chemistry and optoelectronic properties. Chemical Reviews, 119, 5510–5594.
    [50] Zhang, F., et al. (2020). Core–shell quantum dots for efficient infrared emission. ACS Nano, 14, 10709–10720.
    [51] Deng, Z., et al. (2021). Interface engineering in AgInSe₂/ZnSe core–shell quantum dots. Advanced Functional Materials, 31, 2102114.
    [52] Liu, X., et al. (2023). Carrier dynamics in core–shell quantum dots for photodetection. Nano Letters, 23, 4123–4131.
    [53] Guo, Y., et al. (2019). High-responsivity quantum dot photodetectors. Advanced Functional Materials, 29, 1900342.
    [54] Wang, R., et al. (2022). Low-power near-infrared photodetectors based on quantum dots. ACS Photonics, 9, 3275–3284.
    [55] Zhou, L., et al. (2024). Near-infrared photogating photodetectors based on quantum dots. Advanced Materials, 36, 2308654.
    [56] Kim, J., et al. (2019). Near‐infrared quantum dots for optoelectronic applications. Advanced Materials, 31, 1807575.
    [57] Wang, X., et al. (2020). Silver chalcogenide quantum dots for infrared optoelectronics. Journal of Materials Chemistry C, 8, 16430–16441.
    [58] Sun, P., et al. (2024). Ag₂Se quantum dots for broadband photodetection from visible to near-infrared. Advanced Science, 11, 2307462.
    [59] Coughlan, C., et al. (2020). I–III–VI quantum dots: synthesis and optoelectronic applications. Chemical Reviews, 120, 9813–9864.
    [60] Liu, M., et al. (2020). Core–shell quantum dots: defect passivation and carrier dynamics. ACS Nano, 14, 4569–4579.
    [61] Yang, H., et al. (2022). Core–shell quantum dots for high-performance photodetectors. Advanced Materials, 34, 2106875.
    [62] Yu, M., Yang, X., Zhang, Y., Yang, H., Huang, H., Wang, Z., ... & Wang, Q. (2021). Pb‐Doped Ag2Se Quantum Dots with Enhanced Photoluminescence in the NIR‐II Window. Small, 17(8), 2006111.
    [63] Ji, C., Zhang, Y., Zhang, T., Liu, W., Zhang, X., Shen, H., ... & Yu, W. W. (2015). Temperature-dependent photoluminescence of Ag2Se quantum dots. The Journal of Physical Chemistry C, 119(24), 13841 13846.

    QR CODE