簡易檢索 / 詳目顯示

研究生: 李佳訓
Li, Jia-Xun
論文名稱: 反算及最佳控制法於未知濃度預測之應用
An Inverse and Optimal Control Algorithms in Estimating Unknown System Concentration
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 質量傳導反算問題摻雜最佳化控制
外文關鍵詞: inverse problem, mass transfer, optimal controll, doping
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一般而言,大部分工程問題的解析上,可依其輸入(Input source)、系統模式(System module)和輸出(Output response)三者之間的關係分成兩大類。第一類的問題是探討不同輸入值對於已知之系統模式所造成的輸出變化為何。第二類的問題則是藉由已知的系統模式和輸出來推算出其輸入值;或是藉由已知的輸入及輸出,來探求其系統模式。我們統稱第一類的問題為正算問題(Direct problem),第二類的問題為反算問題或稱逆向問題(Inverse problem)。在本文第一章中,主要是利用反算問題中的共軛梯度法(Conjugate Gradient Method)來進行反算分析工作。問題的物理模型主要是在探討藉由蓄水層中某一位置的濃度分佈之量測,來預測地下蓄水層邊界上面的污染源強度。在這個質傳問題的反算中,我們可以利用數值實驗來模擬實際的濃度分佈且在考慮量測誤差的情況下,檢驗反算分析的正確性。結果顯示在初始猜值為未知任意猜值的情況下,我們可以成功的運用共軛梯度法進行反算分析得到為時間及位置函數的污染源強度之預測值。在第二章中,我們主要是探討最佳化控制理論之共軛梯度法應用於半導體摻雜擴散製程時,於要求半導體所需的無差排濃度下,成功地預測出最適當的摻雜擴散濃度。在這個最佳化控制的問題中,我們將進行數值實驗來加以驗證此反算分析的可靠度。本文與之前的研究不同的是能在相同的物理模型下利用共軛梯度法反算出更正確的結果,或是利用最佳化控制理論以單一摻雜濃度控制函數預測出良好的無差排濃度。由以上兩章的結果顯示,共軛梯度法應用在質傳問題中的污染源強度反算預測及摻雜濃度最佳化控制中,均可以得到很好的研究成果。

    摘 要I 誌 謝III 目 錄IV 圖表目錄VI 符號說明VIII 第一章 反算法於二維地下蓄水層未知污染源強度之預測1 1-1 研究背景與目的1 1-2 前言2 1-3 直接解問題5 1-4 反算問題7 1-5 共軛梯度法之極小化過程8 1-6 靈敏性問題與前進步距9 1-7 伴隨問題與梯度方程式11 1-8 收斂條件5 1-9 數值計算流程15 1-10 結果與討論17 1-11 結論24 1-12 參考文獻40 第二章 最佳化控制問題於半導體摻雜擴散製程表面濃度控制之應用42 2-1 研究背景與目的42 2-2 前言43 2-3 直接解問題45 2-4 最佳化控制問題47 2-5 共軛梯度法之極小化過程49 2-6 靈敏性問題與前進步距50 2-7 伴隨問題與梯度方程式51 2-8 數值計算流程54 2-9 結果與討論55 2-10 結論62 2-11 參考文獻75 第三章 結語77

    1. G. L. Moltyaner and R. W. D. Killey, “ Twin lake tracer tests: longitudinal dispersion“ , Water Resour. Res. , 24(10) , 1613-1637 , 1988.

    2. N-Z. Sun “ Inverse Problems in Groundwater Modeling ”, Kluwer Academic Publishers , Dordrecht , p.337 , 1994.

    3. R. M. Neupauer , B. Borchers and J. L. Wilson , “ Comparison of inverse methods for reconstructing the release history of a groundwater contamination source ” , Water Resour. Res., 36(9) , 2469-2475 , 2000

    4. R. M. Cotta, Ed. ,“ The Integral Transform Method in Thermal- Fluid Sciences and Engineering ” , Begell House , New York , 1998.

    5. C. Liu , J. E. Szecsody , J. M. Zachara and W. P. Ball , “ Use of the generalized integral transform method for solving equations of solute transport in porous media ” , Adv. Water Resour., 23, 483-492 , 2000

    6. M. A. Leal and N. J. Ruperti Jr. ,“ A numerical study for the two-dimensional solute transport in groundwater pathway via integral transform method ” , Hybrid Meth. Engng., 2(1) , 111-129 , 2000.

    7. Nerbe J. Ruperti Jr. ,“ Estimation of the Release History of a Contaminant Source in 2-D Groundwater Systems ”, 4th International Conference on Inverse Problems in Engineering Rio de Janeiro, Brazil , p.317-324 , 2002.

    8. O. M. Alifanov, “ Solution of an Inverse Problem of Heat Conduction by Iteration Methods ”, J. of Engineering Physics, 26 (1974) 471-476.

    9. C. H. Huang and C. W. Chen, “ A Boundary Element Based Inverse-Problem in Estimating Transient Boundary Conditions with Conjugate Gradient Method ”, Int.
    J. Numerical Methods in Engineering 42 (1998) 943-965.

    10. C. H. Huang and S. P. Wang, “ A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method ” , Int. J. Heat and Mass Transfer, 42 (1999) 3387-3403.

    11. C. H. Huang and W. C. Chen, “ A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method ”, Int. J. Heat and Mass Transfer, 43 (2000) 3171-3181.

    12. W. J. Chang and C. I. Weng, “ Inverse Problem of Coupled Heat and Moisture Transport for Prediction of Moisture Distributions in an Annular Cylinder ”, Int. J. Heat and Mass Transfer, 42 (1999) 2661-2672.

    13. M. D. Mikhailov and B. K. Shishedjiev, “ Temperature and Moisture Distributions During Contact Drying of a Moist Porous Sheet ”, Int. J. Heat and Mass Transfer, 18 (1975) 18-24.

    14. O. M. Alifanov, “ Inverse Heat Transfer Problem ”, Springer-Verlag, Berlin, 1994.

    15. O. M. Alifanov, “ Solution of an Inverse Problem of Heat Conduction by Iteration Methods ”, J. of Engineering Physics, 26 (1974) 471-476.

    16. IMSL Library Edition 10.0, User's Manual: Math Library Version 1.0 , IMSL , Houston , TX , 1987.

    17. W. Bardsley, “ Progress in Semiconductors ” , Vol.4, p.155, ed .A.F.Gibson , Wiley , New York, 1990

    18. E. Levine , J. Wasburn , and G. Thomas , “ Diffusion-Induced Defects in Silicon (I) ” J. Appl. Phys. 38 , 81-87, 1967.

    19. R. L. Mozzi and J. M. Levine , “ Zn-Diffusion-Induced Damage in InSb Diodes ” , J. Appl. Phys. 41, 280-285 , 1970.

    20. S. Prussin , “ Generation and Distribution of Dislocations by Solute Diffusion ” , J. Appl. Phys. 32 , 1876-1881, 1961.

    21. B. Tuck , “ Introduction to Diffusion in Semiconductors ” , Peter peregrines , London , 1974.

    22. J. C. M. Li , “ Physical chemistry of some microstructural phenomena ” , Metal. Trans. 9A , 1353-1380, 1978.

    23. S. Lee and J. C. M. Li , “ Dislocation-free diffusion processes ” , J. Appl. Phys. 52 , 1336-1346 , 1981.

    24. J. L. Chu and S. Lee , “ Diffusion-induced stresses in a long bar of square cross section ” , J. Appl. Phys. 73 , 3211-3219 , 1993.

    25. C. C. Hwang , K. M. Chen , and J. Y. Hsieh , “ Diffusion-induced Stressesin A long Bar Under an Electric Field ” , J. Phys. D27 , 2155-2162 , 1994.

    26. C. C. Hwang , S. Lin , H. S. Chu , and W. S. Lee , “ Nonlinear
    diffusion-induced stresses in a long bar of square cross section.” , Int. J.
    Solid. Struct. 36 , 269-284 , 1999.

    27. A. G. Butkovskii, A. Y. Lerner, “ The Optimal Control Systems with Distributed Parameters ”, Auto. Remote Control, Vol. 21, pp 472-77, 1960.

    28. R. A. Meric, “ Finite Element Analysis of Optimal Heating of a Slab with Temperature Dependent Thermal Conductivity ”, Int. J. Heat and Mass Transfer, Vol. 22, pp. 1347-53, 1979.

    29. C. J. Chen, M. N. Ozisik,“ Optimal Heating of a Slab with a Plane Heat Source of Timewise Varying Strength ”, Numerical Heat Transfer, Part A, Vol. 21, pp. 351-61, 1992.

    30. C. J. Chen, M. N. Ozisik,“ Optimal Convective Heating of a Hollow Cylinder with Temperature Dependent Thermal Conductivity ”, Applied Scientific Research, Vol. 52, pp. 67-79, 1994.

    31. C. H. Huang,“ An Optimal Control Problem in Estimating the Optimal Control Force for the Force Vibration System ”, Int. J. Numerical Methods in Engineering, Vol. 52, pp. 1323-35, 2001.

    32. C. H. Huang, C. Y. Yeh,“ An Optimal Control Algorithm for EntranceConcurrent Flow Problems ”, Int. J. Heat and Mass Transfer, Vol. 46, pp. 1013-27, 2003.

    33. C. H. Huang , C. Y. Lee ,“ The Heat Conducting Problem in Estimating the Optimal Control Boundary Conditions ” , 2003.

    34. O. M. Alifanov,“ Solution of an Inverse Problem of Heat Conduction by Iteration Methods ”, J. of Engineering Physics, Vol. 26, pp. 471-76, 1974.

    下載圖示 校內:立即公開
    校外:2005-08-31公開
    QR CODE