簡易檢索 / 詳目顯示

研究生: 劉林育
Liu, Lin-Yu
論文名稱: 原子與分子最佳化隨機控制軌跡與量子力學機率比對
Comparison of Atomic and Molecular Trajectories under Optimal Stochastic Control with Quantum Probability
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 量子系統最佳隨機控制氫原子分子振動
外文關鍵詞: Quantum systems:optimal stochastic control, hydrogen atom, molecular vibrations
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的即是在為量子系統建立一個狀態空間描述法,透過最佳化隨機控制來驗證量子系統其實就是最佳化的隨機系統。由於最佳化的過程包含兩個步驟:複數化和隨機化,這結果顯示量子運動實際上是發生在複數空間的一種隨機運動。本論文推導出量子隨機運動所需滿足的隨機微分方程式,並且加以套用在氫原子的量子動態、角動量及雙原子分子中的量子動態;再透過方程式的求解,獲得貼近真實世界的量子隨機軌跡。

    The purpose of this paper is to establish a state-space for quantum systems, according to optimal stochastic control, and to verify that a quantum system is actually an optimized stochastic system. The proposed optimization process comprises two steps: complexification and randomization, and the outcome of the process shows that a quantum motion is actually a complex Brownian motion. After our study, it becomes clear that a quantum path is random and fractal, and is governed by a stochastic differential equation, from which a quantum paths can be solved for electronic motions in hydrogen atom and for orbital angular momentum and quantum dynamics in diatomic molecules.

    摘要i Abstract ii 誌謝iii 表目錄vi 圖目錄vii 符號表viii 第一章 緒論1 1.1背景及文獻回顧1 1.2研究目標4 1.3各章概述5 第二章 以最佳化隨機控制求解量子系統6 2.1 最佳隨機控制求解量子力學 6 2.2 擴展至多變數系統11 2.3 擴展至曲線座標系統15 2.4 隨機運動方程數值求解步驟 18 第三章 原子內的量子運動22 3.1 氫原子中的量子運動22 3.2 氫原子的量子隨機運動25 3.3 氫原子的角動量36 第四章 雙原子分子的量子動態41 4.1 Morse函數的簡介41 4.2 描述雙原子分子振動的隨機方程式43 第五章 結論52 5.1結果與討論52 5.2未來研究方向53 參考文獻54

    [1]C. C. Chou, R. E. Wyatt, 2007, “Quantum Trajectories in Complex Space”, Phys. Rev. A 76, 012115.
    [2]D. Bohm, 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I”, Phys. Rev. 85, 166–179.
    [3]D. Bohm, 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II”, Phys. Rev. 85, 180–193.
    [4]C. C. Chou, R.E. Wyatt, 2010, “Trajectory Approach to Quantum Wave Packet Dynamics: The Correlated Derivative Propagation Method”, Chem. Phys. Lett. 500, 342-346.
    [5] G. Drolshagen, E. J. Heller, 1983, “A Wavepacket Approach to Gas-surface Scattering: Application to Surfaces with Imperfections”, Elsevier, New York.
    [6]E. A. McCullough, R.E. Wyeth, 1961, “Quantum Fluid Dynamics in the Lagrangian Representation and Applications to Photo Dissociation Problems”, J. Chem. Phys. 51,1253-1969.
    [7]E. Aris, 1962, “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, Englewood Cliffs, NJ.
    [8]B. Schutz, 1995, “Geometrical Methods of Mathematical Physics”, Cambridge University Press, Cambridge, UK.
    [9]F. H. M. Faisal, U. Schwengelbeck, 1995, “Unified Theory of Lyapunov Exponents and a Positive Example of Deterministic Quantum Chaos”, Phy. Lett. A 207, 31-36.
    [10]Adrian E. Gill, 1982, “Atmosphere-ocean Dynamics”, Academic Press. p. 297.
    [11]Y. Goldfarb, 1982, “Complex Trajectory Method in Time-dependent WKB”, J. Chem. Phys. 128,164114.
    [12]Todd A. Brun , 2001,“A Simple Model of Quantum Trajectories”, Am. J. Phys. 70, 719-737.
    [13]K. C. Su, 2012, “Complex State-Space Realization of Quantum Systems: An Optimal Stochastic Control Approach”, 國立成功大學航空太空學系博士論文。
    [14]C. D. Yang, 2012, “非線性控制講義”, 國立成功大學航空太空學系。
    [15]C. D. Yang, 2010, “Complex Mechanics”, Progress in Nonlinear Science, Vol. 1, ISSN 2077-8139, Asian Academic Publisher, Hong Kong.
    [16]P. M. Morse, 1929, " Diatomic Molecules According to the Wave Mechanics II . Vibrational Levels" Phys. Rev. 34, pp. 57-64.
    [17]Y. P. Varshni, 1957, “Comparative Study of Potential Energy Functions for Diatomic Molecules”, Rev. Mod. Phys. 29, pp. 664–682.
    [18]D. Steele and E. R. Lippincott, 1962, “Comparative Study of Empirical Internuclear Potential Functions”, Rev. Mod. Phys. 34, pp. 239–251.
    [19]K. S. Jhung, I. H. Kim, K. B. Hahn, and K. H. Oh, 1989, “Scaling Properties of Diatomic Potentials”, Phys. Rev. A 40, pp.7409–7412.
    [20]M. M. Niero and L. M. Simmons, 1979, “Eigenstates, Coherent States, and Uncertainty Products for the Morse Oscillator”, Phys. Rev. A 19, 438–444.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE