| 研究生: |
劉林育 Liu, Lin-Yu |
|---|---|
| 論文名稱: |
原子與分子最佳化隨機控制軌跡與量子力學機率比對 Comparison of Atomic and Molecular Trajectories under Optimal Stochastic Control with Quantum Probability |
| 指導教授: |
楊憲東
Yang, Ciann-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 量子系統 、最佳隨機控制 、氫原子 、分子振動 |
| 外文關鍵詞: | Quantum systems:optimal stochastic control, hydrogen atom, molecular vibrations |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的即是在為量子系統建立一個狀態空間描述法,透過最佳化隨機控制來驗證量子系統其實就是最佳化的隨機系統。由於最佳化的過程包含兩個步驟:複數化和隨機化,這結果顯示量子運動實際上是發生在複數空間的一種隨機運動。本論文推導出量子隨機運動所需滿足的隨機微分方程式,並且加以套用在氫原子的量子動態、角動量及雙原子分子中的量子動態;再透過方程式的求解,獲得貼近真實世界的量子隨機軌跡。
The purpose of this paper is to establish a state-space for quantum systems, according to optimal stochastic control, and to verify that a quantum system is actually an optimized stochastic system. The proposed optimization process comprises two steps: complexification and randomization, and the outcome of the process shows that a quantum motion is actually a complex Brownian motion. After our study, it becomes clear that a quantum path is random and fractal, and is governed by a stochastic differential equation, from which a quantum paths can be solved for electronic motions in hydrogen atom and for orbital angular momentum and quantum dynamics in diatomic molecules.
[1]C. C. Chou, R. E. Wyatt, 2007, “Quantum Trajectories in Complex Space”, Phys. Rev. A 76, 012115.
[2]D. Bohm, 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I”, Phys. Rev. 85, 166–179.
[3]D. Bohm, 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II”, Phys. Rev. 85, 180–193.
[4]C. C. Chou, R.E. Wyatt, 2010, “Trajectory Approach to Quantum Wave Packet Dynamics: The Correlated Derivative Propagation Method”, Chem. Phys. Lett. 500, 342-346.
[5] G. Drolshagen, E. J. Heller, 1983, “A Wavepacket Approach to Gas-surface Scattering: Application to Surfaces with Imperfections”, Elsevier, New York.
[6]E. A. McCullough, R.E. Wyeth, 1961, “Quantum Fluid Dynamics in the Lagrangian Representation and Applications to Photo Dissociation Problems”, J. Chem. Phys. 51,1253-1969.
[7]E. Aris, 1962, “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, Englewood Cliffs, NJ.
[8]B. Schutz, 1995, “Geometrical Methods of Mathematical Physics”, Cambridge University Press, Cambridge, UK.
[9]F. H. M. Faisal, U. Schwengelbeck, 1995, “Unified Theory of Lyapunov Exponents and a Positive Example of Deterministic Quantum Chaos”, Phy. Lett. A 207, 31-36.
[10]Adrian E. Gill, 1982, “Atmosphere-ocean Dynamics”, Academic Press. p. 297.
[11]Y. Goldfarb, 1982, “Complex Trajectory Method in Time-dependent WKB”, J. Chem. Phys. 128,164114.
[12]Todd A. Brun , 2001,“A Simple Model of Quantum Trajectories”, Am. J. Phys. 70, 719-737.
[13]K. C. Su, 2012, “Complex State-Space Realization of Quantum Systems: An Optimal Stochastic Control Approach”, 國立成功大學航空太空學系博士論文。
[14]C. D. Yang, 2012, “非線性控制講義”, 國立成功大學航空太空學系。
[15]C. D. Yang, 2010, “Complex Mechanics”, Progress in Nonlinear Science, Vol. 1, ISSN 2077-8139, Asian Academic Publisher, Hong Kong.
[16]P. M. Morse, 1929, " Diatomic Molecules According to the Wave Mechanics II . Vibrational Levels" Phys. Rev. 34, pp. 57-64.
[17]Y. P. Varshni, 1957, “Comparative Study of Potential Energy Functions for Diatomic Molecules”, Rev. Mod. Phys. 29, pp. 664–682.
[18]D. Steele and E. R. Lippincott, 1962, “Comparative Study of Empirical Internuclear Potential Functions”, Rev. Mod. Phys. 34, pp. 239–251.
[19]K. S. Jhung, I. H. Kim, K. B. Hahn, and K. H. Oh, 1989, “Scaling Properties of Diatomic Potentials”, Phys. Rev. A 40, pp.7409–7412.
[20]M. M. Niero and L. M. Simmons, 1979, “Eigenstates, Coherent States, and Uncertainty Products for the Morse Oscillator”, Phys. Rev. A 19, 438–444.