簡易檢索 / 詳目顯示

研究生: 賴聖豐
Lai, Sheng-Feng
論文名稱: X-ray輻射法合成金奈米粒子及其尺寸控制之研究
X-Ray Synthesis and Size Control of Gold Nanoparticles
指導教授: 胡宇光
Hwu, Yeu-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 106
中文關鍵詞: 金奈米粒子輻射合成尺寸控制光致螢光多模態成像技術腫瘤發展
外文關鍵詞: Gold nanoparticles, Radiation synthesis, Size control, Photoluminescence, Multimodality imaging, Tumor development
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 客製化理想的粒子尺寸是全面且有效地探究金奈米粒子之各種獨特性質的首要條件。過去,不同的合成方法已成功地被用來製造多功能性的金奈米粒子,然而多數的方法往往在合成後尚必須進行複雜的移除模板之動作。而這些程序更常因受限於動力學本質上的低反應速率而導致大範圍粒子尺寸分布的產生。此論文的研究首先實現了一個完全不同的X-ray輻射合成策略,更強調專注於金奈米粒子的合成以及證實其所伴隨的獨特性質主要源自於卓越的粒子尺寸控制之能力。
    在利用同步加速器所產生的高強度X-ray輻照金前驅物下,快速的還原使得粒子的成核反應同時且均勻的展開。這樣的特性使得我們可以在不需要任何的物理模板(例如樹枝狀高分子或微胞)的加入下成功地合成出不同粒徑大小的金奈米粒子,特別是約為1 nm具有相當小範圍粒徑分布且傑出膠體穩定性的金奈米團簇。因此,此方法不僅簡化了合成之程序及增加反應之控制性,更減少了繁雜的純化程序所造成的負面效應之可能性。
    在進一步的應用上,我們所合成之金奈米團簇特殊的雙共存性質(即強可見螢光和高癌細胞累積量)為生物醫學研究上提供了一同時可利用X-ray和可見光顯微鏡造影之新型多模態成像技術。這些性質直接源自於尺寸控制之結果,特別僅存於粒徑尺寸小於或接近1.4 nm下。我們也同時證實了該1.4 nm的金奈米團簇具有相當低的癌細胞毒性以及增生之影響性。這些粒子在癌細胞內顯著的累積量使得我們可以利用X-ray造影和螢光顯微技術來追蹤癌細胞在動物體內的位置和轉移之情況。
    金奈米粒子同時也允許我們可以對其進行多樣性的表面修飾,使其具備更多不同的物理和生物化學性質。這些成熟的程序不但可以在我們所合成出來的奈米粒子上得以實現,更能有意義地拓展其在生物醫學上具有潛力的應用價值。我們發現特別的表面硫醇基化除了可影響金奈米粒子的尺寸之外,更決定了UV激發出可見螢光的存在與否。藉由分析具有不同碳鏈長度烷基硫醇(從3-巰基丙酸到16-巰基十六烷酸)之金奈米粒子的表面覆蓋來探究了這樣的現象,結果指出:強光致螢光特性僅存在於最小尺寸的金奈米粒子下;隨著烷基硫醇的碳鏈長度增加,其強度也隨之明顯的增加;在最長碳鏈16-巰基十六烷酸的表面覆蓋下可達到28%的量子效率。

    The synthesis of gold nanoparticles (Au NPs) with desired size is an important prerequisite for the full exploitation of their properties. Highly functional Au NPs can be synthesized by several means, but these approaches require complex procedures such as template removal. These processes generally are limited by the reaction rate kinetics and result in broad particle size distribution. Our study implemented a completely different synthesis strategy using x-ray irradiation. This thesis focuses specifically on the synthesis of Au NPs and demonstrates the subsequent unique properties make possible due to mainly the exceptional ability to control the particle size.
    With very intense X-rays generated by a device such as synchrotron accelerator, the reduction of metal ion in solution completed extremely fast and the nucleation of the reduced metal atoms starts uniformly. These favorable characteristics allow us to successfully synthesize Au NPs in different sizes, especially in very small size ~1 nm, with narrow size distribution and excellent colloidal stability, without access to physical templates such as dendrimers and micelle. The process therefore not only simplifies the synthesis and increases the control on the reaction, but reduces the possible negative effects of more complicated purification process.
    Two coexisting properties of these small Au NPs, a strong visible fluorescence and very high accumulation in cancer cells, enable a new type multimodality imaging using X-ray and visible light microscopes in biomedical research. These properties come as a direct consequence of the precise size control; specifically, they exist only when the size is smaller than ~1.4 nm. We also demonstrate that these 1.4 nm Au NPs are non-cytotoxic and do not interfere with cancer cell proliferation. Significant accumulation of these Au NPs in tumor cells allows us to use X-ray imaging and fluorescence microscopy to trace their location in animal and follow their migration.
    These nanoparticles, specifically Au NPs, allow versatile modifications of their surface and subsequent physical and biochemical properties. These matured processes can be implemented to our nanoparticles and further expand their potential biomedical applications. We found specifically surface thiolation affects the size of Au NPs and the presence of visible luminescence under UV stimulation. These phenomena were also explored by analyzing alkanethiolate coatings with different carbon chain lengths, from 3-mercaptopropionic acid (3-MPA) to 16-mercaptohexadecanoic acid (16-MHDA). Photoluminescence is present for the smallest NPs, but its intensity becomes more intense as the carbon chain length increases, achieving a quantum efficiency of 28% with a 16-MHDA coating.

    ABSTRACT I ACKNOWLEDGMENTS IV CONTENTS V LIST OF TABLE VII LIST OF FIGURES VIII CHAPTER I. INTRODUCTION 1 1.1 Gold Nanoparticles 1 1.2 Background - Physical and Chemical Properties of Au NPs 1 1.2.1 Surface Plasmon Resonance: Light Absorption and Scattering 1 1.2.2 Cytotoxicity and Cellular Uptake 3 1.2.3 Photoluminescence 4 1.3 Background - Synthetic Method and Size Control 5 1.3.1 Formation Mechanism of Gold Nanoparticles 6 1.3.2 Synthesis and Size Control by General Methods 8 1.4 Synthesis and Size Control Based on Intense X-ray Irradiation 16 CHAPTER II. X-RAY SYNTHESIS OF NAKED GOLD NANOPARTICLES & POLYMER-COATED GOLD NANOPARTICLES 18 2.1 Naked Gold Nanoparticles 18 2.2 Polymer-coated Gold Nanoparticles 20 CHAPTER III. X-RAY SYNTHESIZED THIOLATED GOLD NANOPARTICLES: ONE-POT TUNING OF AU NUCLEATION AND GROWTH 25 3.1 Introduction 25 3.2 Experimental Section 26 3.3 Results and Discussion 28 3.4 Conclusion 37 CHAPTER IV. SIZE CONTROL OF GOLD NANOPARTICLES: THE RELEVANT PARAMETERS 39 4.1 Introduction 39 4.2 Experimental Section 39 4.3 Results and Discussion 40 4.4 Conclusion 48 CHAPTER V. UNIQUE CHARACTERISTICS IN SIZE & BIOMEDICAL APPLICATIONS 49 5.1 Introduction 49 5.2 Experimental Section 50 5.3 Results and Discussion 54 5.4 Conclusion 68 CHAPTER VI. OPTIMIZATION OF PHOTOLUMINESCENCE OF GOLD NANOPARTICLES 69 6.1 Introduction 69 6.2 Experimental Section 69 6.3 Results and Discussion 71 6.4 Conclusion 82 CHAPTER VII. OUTLOOK 83 REFERENCES 85

    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B-Biointerfaces, 28(4), 313-318. doi: Pii S0927-7765(02)00174-1 Doi 10.1016/S0927-7765(02)00174-1
    Akhavan, A., Kalhor, H. R., Kassaee, M. Z., Sheikh, N., & Hassanlou, M. (2010). Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chemical Engineering Journal, 159(1-3), 230-235. doi: 10.1016/j.cej.2010.02.010
    Aldeek, F., Balan, L., Lambert, J., & Schneider, R. (2008). The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots. Nanotechnology, 19(47). doi: Artn 475401 10.1088/0957-4484/19/47/475401
    Alkilany, A. M., & Murphy, C. J. (2010). Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? Journal of Nanoparticle Research, 12(7), 2313-2333. doi: 10.1007/s11051-010-9911-8
    Alvarez, M. M., Khoury, J. T., Schaaff, T. G., Shafigullin, M. N., Vezmar, I., & Whetten, R. L. (1997). Optical absorption spectra of nanocrystal gold molecules. Journal of Physical Chemistry B, 101(19), 3706-3712. doi: Doi 10.1021/Jp962922n
    Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi: 10.1038/nmat2162
    Arnida, Malugin, A., & Ghandehari, H. (2010). Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. Journal of Applied Toxicology, 30(3), 212-217. doi: 10.1002/jat.1486
    Arshi, N., Ahmed, F., Kumar, S., Anwar, M. S., Lu, J., Koo, B. H., & Lee, C. G. (2011). Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E-coli). Current Applied Physics, 11(1), S360-S363. doi: 10.1016/j.cap.2010.11.102
    Ashkarran, A. A., Zad, A. I., Mahdavi, S. M., Ahadian, M. M., & Nezhad, M. R. H. (2009). Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method. Applied Physics a-Materials Science & Processing, 96(2), 423-428. doi: 10.1007/s00339-009-5288-x
    Baffou, G., Quidant, R., & de Abajo, F. J. G. (2010). Nanoscale Control of Optical Heating in Complex Plasmonic Systems. Acs Nano, 4(2), 709-716. doi: 10.1021/nn901144d
    Banerjee, P., Conklin, D., Nanayakkara, S., Park, T. H., Therien, M. J., & Bonnell, D. A. (2010). Plasmon-Induced Electrical Conduction in Molecular Devices. Acs Nano, 4(2), 1019-1025. doi: 10.1021/nn901148m
    Bao, Y. P., Zhong, C., Vu, D. M., Temirov, J. P., Dyer, R. B., & Martinez, J. S. (2007). Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. Journal of Physical Chemistry C, 111(33), 12194-12198. doi: 10.1021/jp071727d
    Barcikowski, S., Hahn, A., Kabashin, A. V., & Chichkov, B. N. (2007). Properties of nanoparticles generated during femtosecond laser machining in air and water. Applied Physics a-Materials Science & Processing, 87(1), 47-55. doi: 10.1007/s00339-006-3852-1
    Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., & Delcourt, M. O. (1998). Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 22(11), 1239-1255. doi: Doi 10.1039/A801445k
    Besner, S., Kabashin, A. V., & Meunier, M. (2007). Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water. Applied Physics a-Materials Science & Processing, 88(2), 269-272. doi: 10.1007/s00339-007-4001-1
    Besner, S., Kabashin, A. V., Winnik, F. M., & Meunier, M. (2009). Synthesis of Size-Tunable Polymer-Protected Gold Nanoparticles by Femtosecond Laser-Based Ablation and Seed Growth. Journal of Physical Chemistry C, 113(22), 9526-9531. doi: 10.1021/jp809275v
    Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S., & Kostelak, R. L. (1991). Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale. Science, 251(5000), 1468-1470. doi: DOI 10.1126/science.251.5000.1468
    Bogush, G. H., & Zukoski, C. F. (1991). Uniform Silica Particle-Precipitation - an Aggregative Growth-Model. Journal of Colloid and Interface Science, 142(1), 19-34. doi: Doi 10.1016/0021-9797(91)90030-C
    Borse, P. H., Yi, J. M., Je, J. H., Choi, S. D., Hwu, Y., Ruterana, P., & Nouet, G. (2004). Formation of magnetic Ni nanoparticles in x-ray irradiated electroless solution. Nanotechnology, 15(6), S389-S392. doi: Pii S0957-4484(04)71909-1 10.1088/0957-4484/15/6/013
    Borse, P. H., Yi, J. M., Je, J. H., Tsai, W. L., & Hwu, Y. (2004). pH dependence of synchrotron x-ray induced electroless nickel deposition. Journal of Applied Physics, 95(3), 1166-1170. doi: 10.1063/1.1637724
    Boyen, H. G., Kastle, G., Weigl, F., Ziemann, P., Schmid, G., Garnier, M. G., & Oelhafen, P. (2001). Chemically induced metal-to-insulator transition in Au55 clusters: effect of stabilizing ligands on the electronic properties of nanoparticles. Physical Review Letters, 87(27 Pt 1), 276401. doi: 10.1103/PhysRevLett.87.276401
    Brouwer, A. M. (2011). Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 83(12), 2213-2228. doi: 10.1351/Pac-Rep-10-09-31
    Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and Reactions of Functionalized Gold Nanoparticles. Journal of the Chemical Society-Chemical Communications(16), 1655-1656. doi: Doi 10.1039/C39950001655
    Brust, M., & Kiely, C. J. (2002). Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 202(2-3), 175-186. doi: Pii S0927-7757(01)01087-1 Doi 10.1016/S0927-7757(01)01087-1
    Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications(7), 801-802. doi: Doi 10.1039/C39940000801
    Cai, X., Chen, H. H., Wang, C. L., Chen, S. T., Lai, S. F., Chien, C. C., . . . Margaritondo, G. (2011). Imaging the cellular uptake of tiopronin-modified gold nanoparticles. [Research Support, Non-U.S. Gov't
    Research Support, U.S. Gov't, Non-P.H.S.]. Anal Bioanal Chem, 401(3), 809-816. doi: 10.1007/s00216-011-4986-3
    Carmichael, A. J., Makino, K., & Riesz, P. (1984). Quantitative aspects of ESR and spin trapping of hydroxyl radicals and hydrogen atoms in gamma-irradiated aqueous solutions. Radiat Res, 100(2), 222-234.
    Chah, S., Hammond, M. R., & Zare, R. N. (2005). Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chemistry & Biology, 12(3), 323-328. doi: 10.1016/j.chembiol.2005.01.013
    Chang, H. Y., Chang, H. T., Hung, Y. L., Hsiung, T. M., Lin, Y. W., & Huang, C. C. (2013). Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. Rsc Advances, 3(14), 4588-4597. doi: 10.1039/c3ra23036h
    Chang, Y. C., Chen, H. W., & Chang, S. H. (2008). Enhanced Near-Field Imaging Contrasts of Silver Nanoparticles by Localized Surface Plasmon. Ieee Journal of Selected Topics in Quantum Electronics, 14(6), 1536-1539. doi: 10.1109/Jstqe.2008.920037
    Chen, H. H., Chien, C. C., Petibois, C., Wang, C. L., Chu, Y. S., Lai, S. F., . . . Margaritondo, G. (2011). Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. Journal of Nanobiotechnology, 9. doi: Artn 14 10.1186/1477-3155-9-14
    Chen, H. J., Kou, X. S., Yang, Z., Ni, W. H., & Wang, J. F. (2008). Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 24(10), 5233-5237. doi: 10.1021/la800305j
    Chen, S. W. (1999). 4-hydroxythiophenol-protected gold nanoclusters in aqueous media. Langmuir, 15(22), 7551-7557. doi: Doi 10.1021/La990398g
    Chen, S. W., Ingram, R. S., Hostetler, M. J., Pietron, J. J., Murray, R. W., Schaaff, T. G., . . . Whetten, R. L. (1998). Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science, 280(5372), 2098-2101. doi: DOI 10.1126/science.280.5372.2098
    Chen, S. W., & Murray, R. W. (1999). Arenethiolate monolayer-protected gold clusters. Langmuir, 15(3), 682-689. doi: Doi 10.1021/La980817u
    Chithrani, B. D., & Chan, W. C. W. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7(6), 1542-1550. doi: 10.1021/nl070363y
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662-668. doi: 10.1021/nl052396o
    Chithrani, B. D., Stewart, J., Allen, C., & Jaffray, D. A. (2009). Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine-Nanotechnology Biology and Medicine, 5(2), 118-127. doi: 10.1016/j.nano.2009.01.008
    Chowdhry, M. M., Mingos, D. M. P., White, A. J. P., & Williams, D. J. (1996). Novel supramolecular self-assembly of a transition-metal organo network based on simultaneous coordinate- and hydrogen-bond interactions. Chemical Communications(8), 899-900. doi: Doi 10.1039/Cc9960000899
    Conner, S. D., & Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37-44. doi: 10.1038/nature01451
    Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), 325-327. doi: 10.1002/smll.200400093
    Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293-346. doi: 10.1021/cr030698+
    Doolittle, J. W., & Dutta, P. K. (2006). Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system. Langmuir, 22(10), 4825-4831. doi: 10.1021/la060047j
    Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740-2779. doi: 10.1039/c1cs15237h
    Duan, H. W., & Nie, S. M. (2007). Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. Journal of the American Chemical Society, 129(9), 2412-+. doi: 10.1021/ja067727t
    Dykman, L. A., & Bogatyrev, V. A. (2007). Gold nanoparticles: Preparation, functionalisation, applications in biochemistry and immunochemistry. Uspekhi Khimii, 76(2), 199-213.
    Enustun, B. V., & Turkevich, J. (1963). Coagulation of Colloidal Gold. Journal of the American Chemical Society, 85(21), 3317-+. doi: Doi 10.1021/Ja00904a001
    Esumi, K., Suzuki, A., Yamahira, A., & Torigoe, K. (2000). Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir, 16(6), 2604-2608. doi: Doi 10.1021/La991291w
    Faraday, M. (1857). The bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147, 145-181.
    Feigin, L. A., & Svergun, D. I. (1987). Structure Analysis by Small Angle X-ray and Neutron Scattering. Plenum, New York.
    Filali, M., Meier, M. A. R., Schubert, U. S., & Gohy, J. F. (2005). Star-block copolymers as templates for the preparation of stable gold nanoparticles. Langmuir, 21(17), 7995-8000. doi: 10.1021/la050377o
    Frens, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241, 20-22.
    Fujita, H., Izawa, M., & Yamazaki, H. (1962). Gamma-Ray Induced Formation of Gold Sol from Chloroauric Acid Solution. Nature, 196(4855), 666-&. doi: Doi 10.1038/196666a0
    Gachard, E., Remita, H., Khatouri, J., Keita, B., Nadjo, L., & Belloni, J. (1998). Radiation-induced and chemical formation of gold clusters. New Journal of Chemistry, 22(11), 1257-1265. doi: Doi 10.1039/A804445g
    Gao, H. J., Shi, W. D., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9469-9474. doi: 10.1073/pnas.0503879102
    Geddes, C. D., Cao, H., Gryczynski, I., Gryczynski, Z., Fang, J. Y., & Lakowicz, J. R. (2003). Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. Journal of Physical Chemistry A, 107(18), 3443-3449. doi: 10.1021/jp022040q
    Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39(1), 22-28.
    Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307-1315. doi: 10.1016/j.addr.2008.03.016
    Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107(11), 4797-4862. doi: 10.1021/cr0680282
    Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold Nanoparticles for Biology and Medicine. Angewandte Chemie-International Edition, 49(19), 3280-3294. doi: 10.1002/anie.200904359
    Goia, D. V., & Matijevic, E. (1999). Tailoring the particle size of monodispersed colloidal gold. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 146(1-3), 139-152. doi: Doi 10.1016/S0927-7757(98)00790-0
    Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897-900. doi: 10.1021/bc049951i
    Guinier, A. (1939). Diffraction of x-rays of very small angles-application to the study of ultramicroscopic phenomenon. Annals of Physics, 12, 161-237.
    Guinier, A., & Fournet, G. (1955a). Small-Angle Scattering of X-rays. John Wiley & Sons, New York.
    Guinier, A., & Fournet, G. (1955b). Small angle scattering of X-rays. John Wiley & Sons, New York.
    Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Kall, M., Zou, S. L., & Schatz, G. C. (2005). Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. Journal of Physical Chemistry B, 109(3), 1079-1087. doi: 10.1021/jp049084e
    Gutierrez-Wing, C., Esparza, R., Vargas-Hernandez, C., Garcia, M. E. F., & Jose-Yacaman, M. (2012). Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures (vol 4, pg 2281, 2012). Nanoscale, 4(24), 7879-7879.
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: a new X-ray contrast agent. British Journal of Radiology, 79(939), 248-253. doi: 10.1259/bjr/13169882
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49(18), N309-N315. doi: Pii S0031-9155(04)81626-9 10.1088/0031-9155/49/18/N03
    Han, M. Y., Quek, C. H., Huang, W., Chew, C. H., & Gan, L. M. (1999). A simple and effective chemical route for the preparation of uniform nonaqueous gold colloids. Chemistry of Materials, 11(4), 1144-1147. doi: Doi 10.1021/Cm9810943
    Hao, E., & Schatz, G. C. (2004). Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 120(1), 357-366. doi: 10.1063/1.1629280
    Henglein, A., & Meisel, D. (1998). Radiolytic control of the size of colloidal gold nanoparticles. Langmuir, 14(26), 7392-7396. doi: Doi 10.1021/La981278w
    Hermanson, G. T. (1996). Bioconjugation Techniques. Academic Press 1st Edition(California), 3-166.
    Hohenester, U., & Krenn, J. R. (2005). Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Physical Review B, 72(19). doi: Artn 195429 10.1103/Physrevb.72.195429
    Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E., Vachet, R. W., Clark, M. R., . . . Murray, R. W. (1998). Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir, 14(1), 17-30. doi: Doi 10.1021/La970588w
    Huang, C. C., Yang, Z., Lee, K. H., & Chang, H. T. (2007). Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II). Angewandte Chemie-International Edition, 46(36), 6824-6828. doi: 10.1002/anie.200700803
    Huang, F. K., Chen, W. C., Lai, S. F., Liu, C. J., Wang, C. L., Wang, C. H., . . . Margaritondo, G. (2010). Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Physics in Medicine and Biology, 55(2), 469-482. doi: 10.1088/0031-9155/55/2/009
    Huang, J. L., Li, Q. B., Sun, D. H., Lu, Y. H., Su, Y. B., Yang, X., . . . Chen, C. X. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10). doi: Artn 105104 10.1088/0957-4484/18/10/105104
    Huang, S. X., Ma, H. Y., Zhang, X. K., Yong, F. F., Feng, X. L., Pan, W., . . . Chen, S. H. (2005). Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization. Journal of Physical Chemistry B, 109(42), 19823-19830. doi: 10.1021/jp052863q
    Huang, T., & Murray, R. W. (2001). Visible luminescence of water-soluble monolayer- protected gold clusters. Journal of Physical Chemistry B, 105(50), 12498-12502. doi: 10.1021/jp0041151
    Huang, X. H., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine, 2(5), 681-693. doi: 10.2217/17435889.2.5.681
    Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 110(14), 7238-7248. doi: 10.1021/jp057170o
    Jana, N. R. (2005). Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small, 1(8-9), 875-882. doi: 10.1002/smll.200500014
    Jana, N. R., Gearheart, L., & Murphy, C. J. (2001a). Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 17(22), 6782-6786. doi: 10.1021/la0104323
    Jana, N. R., Gearheart, L., & Murphy, C. J. (2001b). Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B, 105(19), 4065-4067. doi: Doi 10.1021/Jp0107964
    Ji, X. H., Song, X. N., Li, J., Bai, Y. B., Yang, W. S., & Peng, X. G. (2007). Size control of gold nanocrystals in citrate reduction: The third role of citrate. Journal of the American Chemical Society, 129(45), 13939-13948. doi: 10.1021/ja074447k
    Jia, C. J., & Schuth, F. (2011). Colloidal metal nanoparticles as a component of designed catalyst. Physical Chemistry Chemical Physics, 13(7), 2457-2487. doi: 10.1039/c0cp02680h
    Jiang, W., Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3(3), 145-150. doi: 10.1038/nnano.2008.30
    Jin, H., Heller, D. A., Sharma, R., & Strano, M. S. (2009). Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. Acs Nano, 3(1), 149-158. doi: 10.1021/nn800532m
    Jin, R. C. (2010). Quantum sized, thiolate-protected gold nanoclusters. Nanoscale, 2(3), 343-362. doi: 10.1039/b9nr00160c
    Jin, Y., Wang, P. J., Yin, D. H., Liu, J. F., Qin, L. S., Yu, N. Y., . . . Li, B. M. (2007). Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 302(1-3), 366-370. doi: 10.1016/j.colsurfa.2007.02.060
    Karadas, F., Ertas, G., Ozkaraoglu, E., & Suzer, S. (2005). X-ray-induced production of gold nanoparticles on a SiO2/Si system and in a poly(methyl methacrylate) matrix. Langmuir, 21(1), 437-442. doi: 10.1021/la0478604
    Khan, A. K., Rashid, R., Murtaza, G., & Zahra, A. (2014). Gold Nanoparticles: Synthesis and Applications in Drug Delivery. Tropical Journal of Pharmaceutical Research, 13(7), 1169-1177. doi: 10.4314/tjpr.v13i7.23
    Kim, D., Park, S., Lee, J. H., Jeong, Y. Y., & Jon, S. (2007). Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. Nanomedicine-Nanotechnology Biology and Medicine, 3(4), 352-352. doi: 10.1016/j.nano.2007.10.072
    Kim, Y. G., Oh, S. K., & Crooks, R. M. (2004). Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chemistry of Materials, 16(1), 167-172. doi: 10.1021/cm034932o
    Kinning, D. J., & Thomas, E. L. (1984). Hardsphere interactions between spherical domains in diblock copolymers. Macromolecules, 17, 1712-1718.
    Klar, T., Perner, M., Grosse, S., von Plessen, G., Spirkl, W., & Feldmann, J. (1998). Surface-plasmon resonances in single metallic nanoparticles. Physical Review Letters, 80(19), 4249-4252. doi: DOI 10.1103/PhysRevLett.80.4249
    Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19(1), 15-20. doi: Doi 10.1016/S0167-7799(00)01514-6
    Kneipp, K. (2007). Surface-enhanced Raman scattering. Physics Today, 60(11), 40-46. doi: Doi 10.1063/1.2812122
    Kumar, S., Yang, H. Z., & Zou, S. Z. (2007). Seed-mediated growth of uniform gold nanoparticle arrays. Journal of Physical Chemistry C, 111(35), 12933-12938. doi: 10.1021/jp0740393
    Lai, S. F., Chen, W. C., Wang, C. L., Chen, H. H., Chen, S. T., Chien, C. C., . . . Margaritondo, G. (2011). One-Pot Tuning of Au Nucleation and Growth: From Nanoclusters to Nanoparticles. Langmuir, 27(13), 8424-8429. doi: 10.1021/la200861e
    Lamer, V. K. (1952). Nucleation in Phase Transitions. Industrial and Engineering Chemistry, 44(6), 1270-1277.
    Larhed, M., & Hallberg, A. (1996). Microwave-promoted palladium-catalyzed coupling reactions. Journal of Organic Chemistry, 61(26), 9582-9584. doi: Doi 10.1021/Jo9612990
    Lee, H. J., Je, J. H., Hwu, Y., & Tsai, W. L. (2003). Synchrotron X-ray induced solution precipitation of nanoparticles. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 199, 342-347. doi: Pii S0168-583x(02)01561-6 Doi 10.1016/S0168-583x(02)01561-6
    Lee, T. M., Oldenburg, A. L., Sitafalwalla, S., Marks, D. L., Luo, W., Toublan, F. J. J., . . . Boppart, S. A. (2003). Engineered microsphere contrast agents for optical coherence tomography. Optics Letters, 28(17), 1546-1548. doi: Doi 10.1364/Ol.28.001546
    Levy, R., Shaheen, U., Cesbron, Y., & See, V. (2010). Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev, 1. doi: 10.3402/nano.v1i0.4889
    Li, J. L., Wang, L., Liu, X. Y., Zhang, Z. P., Guo, H. C., Liu, W. M., & Tang, S. H. (2009). In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 274(2), 319-326. doi: 10.1016/j.canlet.2008.09.024
    Li, S. D., & Huang, L. (2008). Pharmacokinetics and biodistribution of nanoparticles. Molecular Pharmaceutics, 5(4), 496-504. doi: 10.1021/mp800049w
    Li, S. W., Burel, L., Aquino, C., Tuel, A., Morfin, F., Rousset, J. L., & Farrusseng, D. (2013). Ultimate size control of encapsulated gold nanoparticles. Chemical Communications, 49(76), 8507-8509. doi: 10.1039/c3cc44843f
    Lin, C. A. J., Lee, C. H., Hsieh, J. T., Wang, H. H., Li, J. K., Shen, J. L., . . . Chang, W. H. (2009). Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. Journal of Medical and Biological Engineering, 29(6), 276-283.
    Lin, C. A. J., Yang, T. Y., Lee, C. H., Huang, S. H., Sperling, R. A., Zanella, M., . . . Chang, W. H. (2009). Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. Acs Nano, 3(2), 395-401. doi: 10.1021/nn800632j
    Lin, H. Y., Huang, C. H., Chang, C. H., Lan, Y. C., & Chui, H. C. (2010). Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Optics Express, 18(1), 165-172. doi: 10.1364/Oe.18.000165
    Link, S., & El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B, 103(40), 8410-8426. doi: Doi 10.1021/Jp9917648
    Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi: Doi 10.1080/01442350050034180
    Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., . . . Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physics in Medicine and Biology, 55(4), 931-945. doi: 10.1088/0031-9155/55/4/002
    Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., . . . Margaritondo, G. (2008). Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 19(29). doi: Artn 295104 10.1088/0957-4484/19/29/295104
    Liu, C. J., Wang, C. H., Wang, C. L., Hwu, Y., Lin, C. Y., & Margaritondo, G. (2009). Simple dose rate measurements for a very high synchrotron X-ray flux. Journal of Synchrotron Radiation, 16, 395-397. doi: 10.1107/S0909049509007225
    Liu, F. K., Chang, Y. C., Ko, F. H., & Chu, T. C. (2004). Microwave rapid heating for the synthesis of gold nanorods. Materials Letters, 58(3-4), 373-377. doi: 10.1016/S0167-577x(03)00504-4
    Loo, C., Hirsch, L., Lee, M. H., Chang, E., West, J., Halas, N. J., & Drezek, R. (2005). Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Letters, 30(9), 1012-1014. doi: Doi 10.1364/Ol.30.001012
    Loo, C., Lowery, A., Halas, N. J., West, J., & Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 5(4), 709-711. doi: 10.1021/nl050127s
    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105(4), 1103-1169. doi: 10.1021/cr0300789
    Lung, J. K., Huang, J. C., Tien, D. C., Liao, C. Y., Tseng, K. H., Tsung, T. T., . . . Stobinski, L. (2007). Preparation of gold nanoparticles by arc discharge in water. Journal of Alloys and Compounds, 434, 655-658. doi: 10.1016/j.jallcom.2006.08.213
    Ma, H. Y., Yin, B. S., Wang, S. Y., Jiao, Y. L., Pan, W., Huang, S. X., . . . Meng, F. J. (2004). Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chemphyschem, 5(1), 68-75. doi: 10.1002/cphc.200300900
    Madden, K. P., & Taniguchi, H. (2001). The role of the DMPO-hydrated electron spin adduct in DMPO-*OH spin trapping. [Research Support, U.S. Gov't, Non-P.H.S.]. Free Radic Biol Med, 30(12), 1374-1380.
    Mallick, K., Wang, Z. L., & Pal, T. (2001). Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. Journal of Photochemistry and Photobiology a-Chemistry, 140(1), 75-80. doi: Doi 10.1016/S1010-6030(01)00389-6
    Marin, M. L., McGilvray, K. L., & Scaiano, J. C. (2008). Photochemical Strategies for the Synthesis of Gold Nanoparticles from Au(III) and Au(I) Using Photoinduced Free Radical Generation. Journal of the American Chemical Society, 130(49), 16572-16584. doi: 10.1021/ja803490n
    Matsumura, Y., & Maeda, H. (1986). A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research, 46(12), 6387-6392.
    McGilvray, K. L., Decan, M. R., Wang, D. S., & Scaiano, J. C. (2006). Facile photochemical synthesis of unprotected aqueous gold nanoparticles. Journal of the American Chemical Society, 128(50), 15980-15981. doi: 10.1021/ja066522h
    Meyre, M. E., Treguer-Delapierre, M., & Faure, C. (2008). Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Langmuir, 24(9), 4421-4425. doi: 10.1021/la703650d
    Mie, G. (1908). Contributions to the optics of turbid media, particularly of colloidal metal solutions. Annals of Physics, 25(3), 377-445.
    Mourato, A., Gadanho, M., Lino, A. R., & Tenreiro, R. (2011). Biosynthesis of Crystalline Silver and Gold Nanoparticles by Extremophilic Yeasts. Bioinorganic Chemistry and Applications. doi: Artn 546074 10.1155/2011/546074
    Murphy, C. J., Gole, A. M., Stone, J. W., Sisco, P. N., Alkilany, A. M., Goldsmith, E. C., & Baxter, S. C. (2008). Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research, 41(12), 1721-1730. doi: 10.1021/ar800035u
    Nagaraju, D. H., & Lakshminarayanan, V. (2008). Electrochemical Synthesis of Thiol-Monolayer-Protected Clusters of Gold. Langmuir, 24(24), 13855-13857. doi: 10.1021/la803156a
    Naqvi, S., Samim, M., Abdin, M. Z., Ahmed, F. J., Maitra, A. N., Prashant, C. K., & Dinda, A. K. (2010). Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 5, 983-989. doi: 10.2147/Ijn.S13244
    Nativo, P., Prior, I. A., & Brust, M. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. Acs Nano, 2(8), 1639-1644. doi: 10.1021/nn800330a
    Nikoobakht, B., & El-Sayed, M. A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 15(10), 1957-1962. doi: 10.1021/cm020732l
    Niu, J. L., Zhu, T., & Liu, Z. F. (2007). One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 18(32). doi: Artn 325607 10.1088/0957-4484/18/32/325607
    Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6-7), 437-445. doi: 10.1080/08958370490439597
    Ocana, M., Rodriguez-Clemente, R., & Serna, C. J. (1995). Uniform Colloidal Particles in Solution - Formation Mechanisms. Advanced Materials, 7(2), 212-216. doi: DOI 10.1002/adma.19950070225
    Okitsu, K., Ashokkumar, M., & Grieser, F. (2005). Sonochemical synthesis of gold nanoparticles: Effects of ultrasound frequency. Journal of Physical Chemistry B, 109(44), 20673-20675. doi: 10.1021/jp0549374
    Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H., & Yobiko, Y. (2007). Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles (vol 17, pg 7717, 2001). Langmuir, 23(26), 13244-13244. doi: 10.1021/la703317d
    Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169-183. doi: 10.1080/10717540490433895
    Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., . . . Jahnen-Dechent, W. (2009). Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small, 5(18), 2067-2076. doi: 10.1002/smll.200900466
    Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., . . . Jahnen-Dechent, W. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small, 3(11), 1941-1949. doi: 10.1002/smll.200700378
    Pedersen, J. S. (1994). Determination of Size Distributions from Small-Angle Scattering Data for Systems with Effective Hard-Sphere Interactions. Journal of Applied Crystallography, 27, 595-608. doi: Doi 10.1107/S0021889893013810
    Perriere, J., Millon, E., Seiler, W., Boulmer-Leborgne, C., Craciun, V., Albert, O., . . . Etchepare, J. (2002). Comparison between ZnO films grown by femtosecond and nanosecond laser ablation. Journal of Applied Physics, 91(2), 690-696.
    Porta, F., Prati, L., Rossi, M., & Scari, G. (2002). Synthesis of Au(0) nanoparticles from W/O microemulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 211(1), 43-48. doi: Pii S0927-7757(02)00220-0 Doi 10.1016/S0927-7757(02)00220-0
    Radziuk, D., Grigoriev, D., Zhang, W., Su, D. S., Mohwald, H., & Shchukin, D. (2010). Ultrasound-Assisted Fusion of Preformed Gold Nanoparticles. Journal of Physical Chemistry C, 114(4), 1835-1843. doi: 10.1021/jp910374s
    Reetz, M. T., & Helbig, W. (1994). Size-Selective Synthesis of Nanostructured Transition-Metal Clusters. Journal of the American Chemical Society, 116(16), 7401-7402. doi: Doi 10.1021/Ja00095a051
    Renugopalakrishnan, V., Kloumann, P. H. B., & Bhatnagar, R. S. (1984). L-Alanyl-Glycylglycine - Ft-Ir and Raman-Spectroscopic Evidence for Tripeptide Packing in a Collagen-Like Arrangement. Biopolymers, 23(4), 623-627. doi: DOI 10.1002/bip.360230404
    Roe, R. J. (2000). Methods of X-Ray and Neutron Scattering in Polymer Science. Oxford University Press, New York.
    Ryan, J. A., Overton, K. W., Speight, M. E., Oldenburg, C. M., Loo, L., Robarge, W., . . . Feldheim, D. L. (2007). Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Analytical Chemistry, 79(23), 9150-9159. doi: 10.1021/ac0715524
    Sarin, H., Kanevsky, A. S., Wu, H. T., Brimacombe, K. R., Fung, S. H., Sousa, A. A., . . . Hall, M. D. (2008). Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. Journal of Translational Medicine, 6. doi: Artn 80 10.1186/1479-5876-6-80
    Scaiano, J. C., Billone, P., Gonzalez, C. M., Maretti, L., Marin, M. L., McGilvray, K. L., & Yuan, N. (2009). Photochemical routes to silver and gold nanoparticles. Pure and Applied Chemistry, 81(4), 635-647. doi: 10.1351/Pac-Con-08-09-11
    Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F., & Whetten, R. L. (1998). Isolation and selected properties of a 10.4 kDa Gold : Glutathione cluster compound. Journal of Physical Chemistry B, 102(52), 10643-10646. doi: Doi 10.1021/Jp9830528
    Semaltianos, N. G. (2010). Nanoparticles by Laser Ablation. Critical Reviews in Solid State and Materials Sciences, 35(2), 105-124. doi: Pii 922889967 10.1080/10408431003788233
    Shah, N. B., Dong, J. P., & Bischof, J. C. (2011). Cellular Uptake and Nanoscale Localization of Gold Nanoparticles in Cancer Using Label-Free Confocal Raman Microscopy. Molecular Pharmaceutics, 8(1), 176-184. doi: 10.1021/mp1002587
    Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13(7), 1822-1826. doi: 10.1039/b303808b
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. doi: 10.1016/j.jcis.2004.03.003
    Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Biological synthesis of triangular gold nanoprisms. Nature Materials, 3(7), 482-488. doi: 10.1038/nmat1152
    Shenhar, R., Norsten, T. B., & Rotello, V. M. (2005). Polymer-mediated nanoparticle assembly: Structural control and applications. Advanced Materials, 17(6), 657-669. doi: 10.1002/adma.200401291
    Shields, S. P., Richards, V. N., & Buhro, W. E. (2010). Nucleation Control of Size and Dispersity in Aggregative Nanoparticle Growth. A Study of the Coarsening Kinetics of Thiolate-Capped Gold Nanocrystals. Chemistry of Materials, 22(10), 3212-3225. doi: 10.1021/cm100458b
    Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23), 10644-10654. doi: 10.1021/la0513712
    Sonavane, G., Tomoda, K., & Makino, K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B-Biointerfaces, 66(2), 274-280. doi: 10.1016/j.colsurfb.2008.07.004
    Song, J. Y., Jang, H. K., & Kim, B. S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44(10), 1133-1138. doi: 10.1016/j.procbio.2009.06.005
    Stieger, M., Pedersen, J. S., Lindner, P., & Richtering, W. (2004). Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir, 20(17), 7283-7292. doi: 10.1021/la049518x
    Su, C. H., Wu, P. L., & Yeh, C. S. (2003). Sonochemical synthesis of well-dispersed gold nanoparticles at the ice temperature. Journal of Physical Chemistry B, 107(51), 14240-14243. doi: 10.1021/jp035451v
    Su, K. H., Wei, Q. H., Zhang, X., Mock, J. J., Smith, D. R., & Schultz, S. (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3(8), 1087-1090. doi: 10.1021/nl034197f
    Sugimoto, T. (2007). Underlying mechanisms in size control of uniform nanoparticles. Journal of Colloid and Interface Science, 309(1), 106-118. doi: 10.1016/j.jcis.2007.01.036
    Sun, X. P., Jiang, X., Dong, S. J., & Wang, E. K. (2003). One-step synthesis and size control of dendrimer-protected gold nanoparticles: A heat-treatment-based strategy. Macromolecular Rapid Communications, 24(17), 1024-1028. doi: 10.1002/marc.200300093
    Sylvestre, J. P., Kabashin, A. V., Sacher, E., & Meunier, M. (2005). Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Applied Physics a-Materials Science & Processing, 80(4), 753-758. doi: 10.1007/s00339-004-3081-4
    Taubert, A., Wiesler, U. M., & Mullen, K. (2003). Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state. Journal of Materials Chemistry, 13(5), 1090-1093. doi: 10.1039/b207895c
    Teranishi, T., Kiyokawa, I., & Miyake, M. (1998). Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Advanced Materials, 10(8), 596-+. doi: Doi 10.1002/(Sici)1521-4095(199805)10:8<596::Aid-Adma596>3.3.Co;2-P
    Toderas, F., Baia, M., Baia, L., & Astilean, S. (2007). Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology, 18(25). doi: Artn 255702 10.1088/0957-4484/18/25/255702
    Tojo, C., de Dios, M., & Barroso, F. (2011). Surfactant Effects on Microemulsion-Based Nanoparticle Synthesis. Materials, 4(1), 55-72. doi: 10.3390/ma4010055
    Turkevich, J. (1985). Colloidal gold. Part I: Historical and preparative aspects, morphology and structure. Gold Bulletin, 18(3), 86-91.
    Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discussions of the Faraday Society(11), 55-&. doi: Doi 10.1039/Df9511100055
    Underwood, S., & Mulvaney, P. (1994). Effect of the Solution Refractive-Index on the Color of Gold Colloids. Langmuir, 10(10), 3427-3430. doi: Doi 10.1021/La00022a011
    Vargas-Hernandez, C., Mariscal, M. M., Esparza, R., & Yacaman, M. J. (2010). A synthesis route of gold nanoparticles without using a reducing agent. Applied Physics Letters, 96(21). doi: Artn 213115 10.1063/1.3442479
    Villiers, C. L., Freitas, H., Couderc, R., Villiers, M. B., & Marche, P. N. (2010). Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. Journal of Nanoparticle Research, 12(1), 55-60. doi: 10.1007/s11051-009-9692-0
    Wang, C. H., Chien, C. C., Yu, Y. L., Liu, C. J., Lee, C. F., Chen, C. H., . . . Margaritondo, G. (2007). Structural properties of 'naked' gold nanoparticles formed by synchrotron X-ray irradiation. Journal of Synchrotron Radiation, 14, 477-482. doi: 10.1107/S0909049507044743
    Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., . . . Margaritondo, G. (2007). Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics, 106(2-3), 323-329. doi: 10.1016/j.matchemphys.2007.06.024
    Wang, C. H., Liu, C. J., Chien, C. C., Chen, H. T., Hua, T. E., Leng, W. H., . . . Margaritondo, G. (2011). X-ray synthesized PEGylated (polyethylene glycol coated) gold nanoparticles in mice strongly accumulate in tumors. Materials Chemistry and Physics, 126(1-2), 352-356. doi: 10.1016/j.matchemphys.2010.11.014
    Wang, C. H., Liu, C. J., Wang, C. L., Hua, T. E., Obliosca, J. M., Le, K. H., . . . Margaritondo, G. (2008). Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense x-ray irradiation. Journal of Physics D-Applied Physics, 41(19). doi: Artn 195301 10.1088/0022-3727/41/19/195301
    Wang, C. L., Hsao, B. J., Lai, S. F., Chen, W. C., Chen, H. H., Chen, Y. Y., . . . Margaritondo, G. (2011). One-pot synthesis of AuPt alloyed nanoparticles by intense x-ray irradiation. Nanotechnology, 22(6). doi: Artn 065605 10.1088/0957-4484/22/6/065605
    Wang, S. G., Lu, W. T., Tovmachenko, O., Rai, U. S., Yu, H. T., & Ray, P. C. (2008). Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chemical Physics Letters, 463(1-3), 145-149. doi: 10.1016/j.cplett.2008.08.039
    Wang, S. H., Lee, C. W., Chiou, A., & Wei, P. K. (2010). Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. Journal of Nanobiotechnology, 8. doi: Artn 33 10.1186/1477-3155-8-33
    Wenseleers, W., Stellacci, F., Meyer-Friedrichsen, T., Mangel, T., Bauer, C. A., Pond, S. J. K., . . . Perry, J. W. (2002). Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. Journal of Physical Chemistry B, 106(27), 6853-6863. doi: 10.1021/jp014675f
    Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, I., Wang, Z. L., . . . Landman, U. (1996). Nanocrystal gold molecules. Advanced Materials, 8(5), 428-433. doi: DOI 10.1002/adma.19960080513
    Wilcoxon, J. P., & Provencio, P. (2003). Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography. Journal of Physical Chemistry B, 107(47), 12949-12957. doi: 10.1021/jp027575y
    Wu, Z. K., & Jin, R. C. (2010). On the Ligand's Role in the Fluorescence of Gold Nanoclusters. Nano Letters, 10(7), 2568-2573. doi: 10.1021/nl101225f
    Yah, C. S. (2013). The toxicity of Gold Nanoparticles in relation to their physiochemical properties. Biomedical Research-India, 24(3), 400-413.
    Yang, Y., Yan, Y., Wang, W., & Li, J. R. (2008). Precise size control of hydrophobic gold nanoparticles using cooperative effect of refluxing ripening and seeding growth. Nanotechnology, 19(17). doi: Artn 175603 10.1088/0957-4484/19/17/175603
    Yang, Y. C., Wang, C. H., Hwu, Y. K., & Je, J. H. (2006). Synchrotron X-ray synthesis of colloidal gold particles for drug delivery. Materials Chemistry and Physics, 100(1), 72-76. doi: 10.1016/j.matchemphys.2005.12.007
    Zhang, C. X., Ren, Z. Y., Yin, Z. G., Qian, H. Y., & Ma, D. Z. (2008). Amide II and amide III bands in polyurethane model soft and hard segments. Polymer Bulletin, 60(1), 97-101. doi: 10.1007/s00289-007-0837-y
    Zhang, S. L., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-Dependent Endocytosis of Nanoparticles. Advanced Materials, 21(4), 419-+. doi: 10.1002/adma.200801393
    Zhang, W. Z., Qiao, X. L., & Chen, J. G. (2007). Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 299(1-3), 22-28. doi: 10.1016/j.colsurfa.2006.11.012
    Zhang, X. D., Guo, M. L., Wu, H. Y., Sun, Y. M., Ding, Y. Q., Feng, X., & Zhang, L. A. (2009). Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. International Journal of Nanomedicine, 4, 165-173.
    Zharov, V. P., Galitovskaya, E. N., Johnson, C., & Kelly, T. (2005). Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy (vol 37, pg 219, 2005). Lasers in Surgery and Medicine, 37(4), 329-329. doi: 10.1002/lsm.20223
    Zheng, J., Ding, Y., Tian, B. Z., Wang, Z. L., & Zhuang, X. W. (2008). Luminescent and Raman active silver nanoparticles with polycrystalline structure. Journal of the American Chemical Society, 130(32), 10472-+. doi: 10.1021/ja803302p
    Zheng, J., Nicovich, P. R., & Dickson, R. M. (2007). Highly fluorescent noble-metal quantum dots. Annual Review of Physical Chemistry, 58, 409-431. doi: 10.1146/annurev.physchem.58.032806.104546
    Zheng, J., Petty, J. T., & Dickson, R. M. (2003). High quantum yield blue emission from water-soluble Au-8 nanodots. Journal of the American Chemical Society, 125(26), 7780-7781. doi: 10.1021/ja035473v
    Zheng, J., Zhang, C. W., & Dickson, R. M. (2004). Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical Review Letters, 93(7). doi: Artn 077402 10.1103/Physrevlett.93.077402
    Zheng, J., Zhou, C., Yu, M. X., & Liu, J. B. (2012). Different sized luminescent gold nanoparticles. Nanoscale, 4(14), 4073-4083. doi: 10.1039/c2nr31192e
    Zhu, H. T., Zhang, C. Y., & Yin, Y. S. (2004). Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. Journal of Crystal Growth, 270(3-4), 722-728. doi: 10.1016/j.jcrysgro.2004.07.008

    下載圖示 校內:2021-08-12公開
    校外:2021-08-12公開
    QR CODE