| 研究生: |
吳信翰 Wu, Sin-Han |
|---|---|
| 論文名稱: |
陽極氧化鋁模板於電化學沉積鈷奈米線及其性質研究 Synthesis and property of cobalt nanowire using electrochemical deposition on anodic aluminum oxide templates |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 陽極氧化鋁(AAO) 、鈷奈米線陣列 、退火製程 |
| 外文關鍵詞: | Anodic aluminum oxide, Cobalt nanowires array, Annealing process |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁性奈米線陣列擁有高密度、高比表面積、高深寬比等特性,對於磁性儲存元件應用有良好潛力,而為了以低廉的成本並快速製作鈷奈米線陣列,本研究使用陽極氧化鋁(anodic aluminum oxide,AAO)模板法配合電鍍製程技術,並以市售大孔徑(200 nm)與本實驗室自製小孔徑(40~50 nm)模板沉積鈷奈米線,探討不同電化學沉積參數對於鈷奈米線沉積情況、結晶方向。
於市售大孔徑(200 nm)AAO模板方面,探討以直流方式沉積,改變不同電壓、電解液濃度與電解液溫度,討論其沉積情況、結晶方向,以及使用高壓(2 V)脈衝方式沉積鈷奈米線,於退火處理前後與傳統低壓直流進行比較。而自製小孔徑模板方面,由於AAO模板底部為不導電之阻擋層,以漸降陽極電壓方式削減其模板阻擋層,並且探討其草酸電解液溫度與擴孔蝕刻於自製AAO模板對於鈷奈米線沉積的影響,並探討兩種不同模板沉積鈷奈米線其結晶性,而最後將自製AAO模板移除,探討獨立鈷奈米線陣列其可見光反射性質。
本實驗使用市售大孔徑(200 nm)模板,在高壓(2 V)脈衝方式沉積鈷奈米線克服孔洞堵塞,以及退火後呈現單一[101]結晶方向之高強度,而在5oC下草酸以漸降陽極電壓方式製備AAO模板以及搭配磷酸擴孔10 min,沉積出長度均勻且在[002]結晶方向高結晶強度的鈷奈米線,並且移除自製AAO模板後,呈現直立無團聚之鈷奈米線陣列,控制其鈷奈米線長度可呈現出不同可見光學波長增強。
Methods used to produce metallic nanowires include lithographic patterning , which is comparatively cumbersome, expansive and not suitable for large scale production, and ‘template synthesis’, which involves electrochemically depositing metal into nanopores of the template. Generally, the template method is cheap and easy to operate, and can produce nanowires with uniform diameters ranging from several nanometres to hundreds of nanometres in a large area. Most research has focused on the effect of the arrangement of the nanowires. However, the structure of nanowires plays an important role in the electronic, optical and magnetic properties. The single crystal structure is essential to compare experimental results with theoretical study. Moreover, the conditions employed in the deposition process, such as Metal electrolyte of concentration, deposition voltage and temperature, are responsible for the control of the structure. We investigated the effects of deposition conditions on the structure of the metallic nanowires.
[1] R. Ferre, K. Ounadjela, J. M. George, L. Piraux, and S. Dubois, "Magnetization processes in nickel and cobalt electrodeposited nanowires," Physical Review B, vol. 56, pp. 14066-14075, Dec 1997.
[2] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer, et al., "Hexagonally ordered 100 nm period nickel nanowire arrays," Applied Physics Letters, vol. 79, pp. 1360-1362, Aug 2001.
[3] A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Applied Physics Letters, vol. 79, pp. 1039-1041, Aug 2001.
[4] B. Marquardt, L. Eude, M. Gowtham, G. Cho, H. J. Jeong, M. Chatelet, et al., "Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease," Nanotechnology, vol. 19, Oct 2008.
[5] P. Lovera, N. Creedon, H. Alatawi, M. Mitchell, M. Burke, A. J. Quinn, et al., "Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications," Nanotechnology, vol. 25, May 2014.
[6] G. W. Meng, A. Y. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, et al., "Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template," Journal of Applied Physics, vol. 97, Mar 2005.
[7] T. N. Narayanan, M. M. Shaijumon, L. Ci, M. Ajayan, and M. R. Anantharaman, "On the Growth Mechanism of Nickel and Cobalt Nanowires and Comparison of Their Magnetic Properties," Nano Research, vol. 1, pp. 465-473, Dec 2008.
[8] S. Dellis, A. Christoulaki, N. Spiliopoulos, D. L. Anastassopoulos, and A. A. Vradis, "Electrochemical synthesis of large diameter monocrystalline nickel nanowires in porous alumina membranes," Journal of Applied Physics, vol. 114, Oct 2013.
[9] S. M. Hamidi, A. Sobhani, A. Aftabi, and M. Najafi, "Optical and magneto-optical properties of aligned Ni nanowires embedded in polydimethylsiloxane," Journal of Magnetism and Magnetic Materials, vol. 374, pp. 139-143, Jan 2015.
[10] X. R. Li, Y. Q. Wang, G. J. Song, Z. Peng, Y. M. Yu, X. L. She, et al., "Synthesis and growth mechanism of ni nanotubes and nanowires," Nanoscale Research Letters, vol. 4, pp. 1015-1020, Sep 2009.
[11] H. J. Hwang, C. H. Kim, Y. H. Jang, S. H. Bhang, H. B. Moon, and J. H. Cho, "Effect of annealing on the magnetic properties of ni nanowires prepared by using an anodized aluminum oxide template," Journal of the Korean Physical Society, vol. 58, pp. 654-658, Mar 2011.
[12] F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P. G. Schiavi, et al., "Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology," Electrochimica Acta, vol. 155, pp. 228-235, Feb 2015.
[13] G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, and P. M. Ajayan, "Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 7074-7078, May 2005.
[14] F. Solymosi, "The bonding, structure and reactions of co2 adsorbed on clean and promoted metal-surfaces," Journal of Molecular Catalysis, vol. 65, pp. 337-358, Apr 1991.
[15] J. Fu, S. Cherevko, and C. H. Chung, "Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate," Electrochemistry Communications, vol. 10, pp. 514-518, Apr 2008.
[16] M. Sadeghpour-Motlagh, K. Mokhtari-Zonouzi, H. Aghajani, and M. G. Kakroudi, "Effects of etching time and naoh concentration on the production of alumina nanowires using porous anodic alumina template," Journal of Materials Engineering and Performance, vol. 23, pp. 2007-2014, Jun 2014.
[17] H. M. Chen, C. F. Hsin, R. S. Liu, S. F. Hu, and C. Y. Huang, "Controlling optical properties of aluminum oxide using electrochemical deposition," Journal of the Electrochemical Society, vol. 154, pp. K11-K14, 2007.
[18] S. Van Gils, P. Mast, E. Stijns, and H. Terryn, "Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry," Surface & Coatings Technology, vol. 185, pp. 303-310, Jul 2004.
[19] B. Ren, G. Picardi, B. Pettinger, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces," Angewandte Chemie-International Edition, vol. 44, pp. 139-142, 2005.
[20] N. B. Chaure, P. Stamenov, F. M. F. Rhen, and J. M. D. Coey, "Oriented cobalt nanowires prepared by electrodeposition in a porous membrane," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 1210-1213, Apr 2005.
[21] J. U. Cho, J. H. Wu, J. H. Min, S. P. Ko, J. Y. Soh, Q. X. Liu, et al., "Control of magnetic anisotropy of Co nanowires," Journal of Magnetism and Magnetic Materials, vol. 303, pp. E281-E285, Aug 2006.
[22] H. Pan, B. H. Liu, J. B. Yi, C. Poh, S. Lim, J. Ding, et al., "Growth of singlecrystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties," Journal of Physical Chemistry B, vol. 109, pp. 3094-3098, Mar 2005.
[23] M. Najafi, S. Soltanian, H. Danyali, R. Hallaj, A. Salimi, S. M. Elahi, et al., "Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer," Journal of Materials Research, vol. 27, pp. 2382-2390, Sep 2012.
[24] G. Sharma, M. V. Pishko, and C. A. Grimes, "Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer," Journal of Materials Science, vol. 42, pp. 4738-4744, Jul 2007.
[25] S. Armyanov, "Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys," Electrochimica Acta, vol. 45, pp. 3323-3335, 2000.
[26] T. Ambridge, J. L. Stevenson, and R. M. Redstall, "Applications of electrochemical methods for semiconductor characterization highly reproducible carrier concentration profiling of normal-gaas," Journal of the Electrochemical Society, vol. 127, pp. 222-228, 1980.
[27] M. L. Tian, J. U. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, "Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism," Nano Letters, vol. 3, pp. 919-923, Jul 2003.
[28] H. Schlorb, V. Haehnel, M. S. Khatri, A. Srivastav, A. Kumar, L. Schultz, et al., "Magnetic nanowires by electrodeposition within templates," Physica Status Solidi B-Basic Solid State Physics, vol. 247, pp. 2364-2379, Oct 2010.
[29] G. E. Thompson, "Porous anodic alumina: Fabrication, characterization and applications," Thin Solid Films, vol. 297, pp. 192-201, Apr 1997.
[30] F. Keller, M. S. Hunter, and D. L. Robinson, "Sructural features of oxide coatings on aluminium," Journal of the Electrochemical Society, vol. 100, pp. 411-419, 1953 1953.
[31] Z. Wu, C. Richter, and L. Menon, "A study of anodization process during pore formation in nanoporous alumina templates," Journal of the Electrochemical Society, vol. 154, pp. E8-E12, 2007 2007.
[32] F. Y. Li, L. Zhang, and R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide," Chemistry of Materials, vol. 10, pp. 2470-2480, Sep 1998.
[33] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, vol. 12, pp. 240-251, Mar 2002.
[34] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, Dec 1 1998.
[35] O. Jessensky, F. Muller, and U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, vol. 72, pp. 1173-1175, Mar 1998.
[36] I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime," Applied Surface Science, vol. 222, pp. 215-225, Jan 30 2004.
[37] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modeling of porous oxide-growth on aluminum," Journal of Physics D-Applied Physics, vol. 25, pp. 1258-1263, Aug 1992.
[38] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, pp. 1466-8, Jun 9 1995.
[39] H. Masuda and M. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask," Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, 1996.
[40] N. Winkler, J. Leuthold, Y. Lei, and G. Wilde, "Large-scale highly ordered arrays of freestanding magnetic nanowires," Journal of Materials Chemistry, vol. 22, pp. 16627-16632, 2012.
[41] K. Nielsch, F. Muller, A. P. Li, and U. Gosele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Advanced Materials, vol. 12, pp. 582-586, Apr 2000.
[42] C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo, "Nanoporous alumina as templates for multifunctional applications," Applied Physics Reviews, vol. 1, Sep 2014.
[43] K. M. Razeeb, F. M. F. Rhen, and S. Roy, "Magnetic properties of nickel nanowires: Effect of deposition temperature," Journal of Applied Physics, vol. 105, Apr 2009.
[44] M. P. Proenca, C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, "Distinguishing nanowire and nanotube formation by the deposition current transients," Nanoscale Research Letters, vol. 7, May 2012.
[45] D. C. Leitao, C. T. Sousa, J. Ventura, J. S. Amaral, F. Carpinteiro, K. R. Pirota, et al., "Characterization of electrodeposited Ni and Ni80Fe20 nanowires," Journal of Non-Crystalline Solids, vol. 354, pp. 5241-5243, Dec 2008.
[46] Y. Ren, Q. F. Liu, S. L. Li, J. B. Wang, and X. H. Han, "The effect of structure on magnetic properties of Co nanowire arrays," Journal of Magnetism and Magnetic Materials, vol. 321, pp. 226-230, Feb 2009.
[47] H. Pan, H. Sun, C. Poh, Y. P. Feng, and J. Y. Lin, "Single-crystal growth of metallic nanowires with preferred orientation," Nanotechnology, vol. 16, pp. 1559-1564, Sep 2005.
[48] H. M. Zhang, X. L. Zhang, J. J. Zhang, Z. Y. Li, and H. Y. Sun, "Fabrication and magnetic properties of CoNi alloy nanotube arrays," Journal of Magnetism and Magnetic Materials, vol. 342, pp. 69-73, Sep 2013.
[49] J. M. Montero-Moreno, M. Belenguer, M. Sarret, and C. M. Mueller, "Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques," Electrochimica Acta, vol. 54, pp. 2529-2535, Mar 2009.
[50] E. Gillette, S. Wittenberg, L. Graham, K. Lee, G. Rubloff, P. Banerjee, et al., "Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates," Physical Chemistry Chemical Physics, vol. 17, pp. 3873-3879, 2015.
[51] N. J. Gerein and J. A. Haber, "Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates," Journal of Physical Chemistry B, vol. 109, pp. 17372-17385, Sep 2005.
[52] 雲. 曹恒光, "不含離子非水溶液之電動力學行為," 化 學 工 程 與 材 料 工 程 學 系 碩 士 論 文, 2000.
[53] C. A. Girginov, I. A. Kanazirski, and V. G. Ilcheva, "Electrolytic coloring of porous aluminum oxide films in CoSO4 solution," Bulgarian Chemical Communications, vol. 45, pp. 52-56, 2013.
校內:2025-12-31公開