簡易檢索 / 詳目顯示

研究生: 張文哲
Chang, Wen-Che
論文名稱: 奈米壓印數值模擬與分析
Numerical Simulation and Analysis on Nanoimprinting Process
指導教授: 林育芸
Lin, Y. Y.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 黏彈性有限元素分析奈米壓印技術
外文關鍵詞: Finite Element Method, Viscoelastic, Nanoimprint Lithography
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要建立二維有限元素分析模型模擬奈米壓印過程中壓印材料 因模具下壓所產生之變形。此有限元素數值模型係根據黏彈性材料之動態分析而建立。利用此數值模型,我們探討模具尺寸、熔融層深度、與施力大小對於奈米壓印過程中變形所產生之影響。此外並探討溫度場變化對壓印變形之影響。本文之數值模擬結果可做為實驗結果之比對,亦可提供將來實驗參數設定之參考。

    We developed a two-dimensional finite element model to simulate the deformation of the imprinting materials caused by the compression of the mold in nanoimprint lithography process. The FEM model is built based on the dynamic analysis of a viscoelastic solid. Using this model, the effects of the feature size of molds, the molten depth of imprinting materials, and the applied force on the deformation during nanoimprinting process were studied. Furthermore, the influence of temperature field is also discussed. The results of our simulation can be used to compare with the experimental results. Moreover, one can refer to the simulation results for better parameter setting in experiments.

    中文摘要.....................................................................................I 英文摘要.....................................................................................II 誌謝.............................................................................................III 目錄.............................................................................................IV 表目錄.........................................................................................VI 圖目錄.........................................................................................VI 第一章 緒論................................................................................1 1.1 研究動機與目的...................................................................1 1.2 本文內容與組織...................................................................2 第二章 奈米壓印技術與數值分析介紹....................................5 2.1 奈米壓印技術介紹...............................................................5 2.2 奈米壓印數值分析...............................................................7 第三章 奈米壓印模擬分析........................................................11 3.1 奈米壓印問題描述...............................................................11 3.2 單軸應力波傳問題...............................................................12 3.3 ABAQUS有限元素數值模型建立........................................14 3.4 ABAQUS數值結果分析........................................................16 第四章 溫度場變化對奈米壓印結果之影響.............................62 4.1 WLF溫度-時間轉換關係式...................................................62 4.2 奈米壓印二維模型溫度變化與時間轉換關係之驗證........63 4.3 鬆弛時間與溫度改變對奈米壓印的影響............................64 4.4 溫度改變時不同鬆弛模數及施力對奈米壓印的影響........65 4.5 不同升溫速率對奈米壓印的影響........................................67 第五章 結論.................................................................................80 參考文獻......................................................................................83 自述..............................................................................................85

    [1]S.Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of
    nanostructures in silicon”, Nature, Vol.417, pp. 835-837 (2002).

    [2]ABAQUS 6.4 User’s Manual.

    [3]http://rpv.iaa.ncku.edu.tw/nano/%AC%E3%A8s%A4%BA%AEe.htm

    [4]Y. Hirai, S. Yoshida, and N. Takagi, “Defect analysis in thermal
    nanoimprint lithography”, journal of Vacuum Science & Technology B,
    Vol.21, No. 6, pp. 2765-2770 (2003).

    [5]M. Worgull, M. Heckele, J. F. He´tu, and K. K. Kabanemi, “Modeling and
    optimization of the hot embossing process for micro- and nanocomponent
    fabrication”, Journal of microlithography, Microfabrication, and
    Microsystems, Vol.5, pp. 011005-1~011005-13 (2006).

    [6]A. C. Allen, E. Sunden, A. Cannon, S. Graham, and W. King, “Nanomaterial
    transfer using hot embossing for flexible electronic devices”, Applied
    Physics Letters, Vol.88, pp. 083112-1~083112-3 (2006).

    [7]K. F. Lei, W. J. Li, and Y. Yam, “Effects of contact-stress on hot-
    embossed PMMA microchannel wall profile”, Microsystem Technologies,
    Vol.11, pp. 353-357 (2005).

    [8]Q. Xia, C. Keimel, H. Ge, Z. Yu,W. Wu, and S. Y. Chou, “Ultrafast
    patterning of nanostructures in polymers using laser assisted nanoimprint
    lithography”, Applied Physics Letters, Vol.83, Number 21, pp. 4417-4419
    (2003).

    [9]C. Lu, Y.-J. Juang, L. J. Lee, D. Grewell, and A. Benatar, “Analysis of
    Laser/IR-Assisted Microembossing”, Polymer Engineering And Science, pp.
    661-668 (2005).

    [10]Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa,
    and M. Sasago, “Study of the resist deformation in nanoimprint
    lithography”, Journal of Vacuum Science & Technology B, Vol. 19, No. 6,
    pp. 2811-2815 (2001).

    [11]W.-B. Young, “Analysis of the nanoimprint lithography with a viscous
    model”, Microelectronic Engineering, Vol. 77, pp. 405-411 (2005).

    [12]F.-B. Hsiao, D.-B. Wang, and C.-P. Jen, “Numerical investigation of
    thermal contact resistance between the mold and substrate on laser-
    assisted imprinting fabrication”, Numerical Heat Transfer, Part A,
    Vol.49, pp. 669-682 (2006).

    [13]J. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed. , Wiley, New
    York (1970).

    下載圖示 校內:2008-07-10公開
    校外:2008-07-10公開
    QR CODE