| 研究生: |
張文哲 Chang, Wen-Che |
|---|---|
| 論文名稱: |
奈米壓印數值模擬與分析 Numerical Simulation and Analysis on Nanoimprinting Process |
| 指導教授: |
林育芸
Lin, Y. Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 黏彈性 、有限元素分析 、奈米壓印技術 |
| 外文關鍵詞: | Finite Element Method, Viscoelastic, Nanoimprint Lithography |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要建立二維有限元素分析模型模擬奈米壓印過程中壓印材料 因模具下壓所產生之變形。此有限元素數值模型係根據黏彈性材料之動態分析而建立。利用此數值模型,我們探討模具尺寸、熔融層深度、與施力大小對於奈米壓印過程中變形所產生之影響。此外並探討溫度場變化對壓印變形之影響。本文之數值模擬結果可做為實驗結果之比對,亦可提供將來實驗參數設定之參考。
We developed a two-dimensional finite element model to simulate the deformation of the imprinting materials caused by the compression of the mold in nanoimprint lithography process. The FEM model is built based on the dynamic analysis of a viscoelastic solid. Using this model, the effects of the feature size of molds, the molten depth of imprinting materials, and the applied force on the deformation during nanoimprinting process were studied. Furthermore, the influence of temperature field is also discussed. The results of our simulation can be used to compare with the experimental results. Moreover, one can refer to the simulation results for better parameter setting in experiments.
[1]S.Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of
nanostructures in silicon”, Nature, Vol.417, pp. 835-837 (2002).
[2]ABAQUS 6.4 User’s Manual.
[3]http://rpv.iaa.ncku.edu.tw/nano/%AC%E3%A8s%A4%BA%AEe.htm
[4]Y. Hirai, S. Yoshida, and N. Takagi, “Defect analysis in thermal
nanoimprint lithography”, journal of Vacuum Science & Technology B,
Vol.21, No. 6, pp. 2765-2770 (2003).
[5]M. Worgull, M. Heckele, J. F. He´tu, and K. K. Kabanemi, “Modeling and
optimization of the hot embossing process for micro- and nanocomponent
fabrication”, Journal of microlithography, Microfabrication, and
Microsystems, Vol.5, pp. 011005-1~011005-13 (2006).
[6]A. C. Allen, E. Sunden, A. Cannon, S. Graham, and W. King, “Nanomaterial
transfer using hot embossing for flexible electronic devices”, Applied
Physics Letters, Vol.88, pp. 083112-1~083112-3 (2006).
[7]K. F. Lei, W. J. Li, and Y. Yam, “Effects of contact-stress on hot-
embossed PMMA microchannel wall profile”, Microsystem Technologies,
Vol.11, pp. 353-357 (2005).
[8]Q. Xia, C. Keimel, H. Ge, Z. Yu,W. Wu, and S. Y. Chou, “Ultrafast
patterning of nanostructures in polymers using laser assisted nanoimprint
lithography”, Applied Physics Letters, Vol.83, Number 21, pp. 4417-4419
(2003).
[9]C. Lu, Y.-J. Juang, L. J. Lee, D. Grewell, and A. Benatar, “Analysis of
Laser/IR-Assisted Microembossing”, Polymer Engineering And Science, pp.
661-668 (2005).
[10]Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa,
and M. Sasago, “Study of the resist deformation in nanoimprint
lithography”, Journal of Vacuum Science & Technology B, Vol. 19, No. 6,
pp. 2811-2815 (2001).
[11]W.-B. Young, “Analysis of the nanoimprint lithography with a viscous
model”, Microelectronic Engineering, Vol. 77, pp. 405-411 (2005).
[12]F.-B. Hsiao, D.-B. Wang, and C.-P. Jen, “Numerical investigation of
thermal contact resistance between the mold and substrate on laser-
assisted imprinting fabrication”, Numerical Heat Transfer, Part A,
Vol.49, pp. 669-682 (2006).
[13]J. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed. , Wiley, New
York (1970).