簡易檢索 / 詳目顯示

研究生: 呂孟修
Lu, Meng-Xiu
論文名稱: 時空異常偵測模型於半導體封裝製程基板帶倉圖
Spatio-Temporal Anomaly Detection for Substrate Strip Bin Map in Semiconductor Assembly Process
指導教授: 王宏鍇
Wang, Hung-Kai
共同指導教授: 李家岩
Lee, Chia-Yen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 72
中文關鍵詞: 影像預測時空預測錯誤偵測基板帶倉圖時空指標
外文關鍵詞: Video Prediction, Spatio-Temporal Prediction, Fault Detection, Strip Bin Map, Spatio-Temporal Metrics
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在深度學習快速發展的現在,以數據驅動的方法應用在資本密集型半導體製造中已有極大成功。在文獻中已有很多關於Wafer Bin Map(WBM)上辨識研究,其主要用於識別WBM上的缺陷模式和尋找造成錯誤的根本原因,藉以降低生產時不良率所造成的成本損失。過去WBM辨識的研究中僅會給出分類的結果,並沒有提供預警機制。因此,本研究建立了在封裝廠中,覆晶封裝製程下的Strip Bin Map (SBM) 預測系統。通過系統中建立的SBM預測模組和判別模組,在給定前站已經出現過的SBM的情況下,此系統可以預測後續站點可能會出現的SBM圖像以及其所屬的缺陷模式。此時系統會提醒工程師處理異常,以減少製造資源的浪費。在實務上,並非所有製程站點都有進行功能測試,因此,本研究透過貝式定理的概念去模擬出缺少的站點。在衡量的部分,我們透過相似性指標以及所提出的成長軌跡指標,建構了一個可以衡量時空效應的時空正確性指標,用以衡量系統的輸出。最後,本研究對台灣半導體封裝製造商進行了一項實證研究。結果表明,所提出的系統在預測出的SBM上,時空正確度的分數比隨機生成高了12倍。也就是說,此系統能夠有效預測未來站點中出現的SBM圖像以及其所屬的缺陷模式。而所提出的時空正確性指標也能夠同時衡量系統預測的SBM在時空效應下的正確性。

    With the rapid development of deep learning, the application of data-driven methods in semiconductor manufacturing has achieved great success. There are many studies on Wafer Bin Map (WBM) recognition in the literature, which are mainly used to identify the failure modes of WBM and find the root cause to reduce yield loss during production. However, past WBM recognition studies only gave classification results. Therefore, this study develops a Strip Bin Map (SBM) prognostic system under the flip-chip bonding process. The SBM prediction and recognition module established in this system can predict the future SBM image and the defect type that appears in the subsequent stations. At this point, the system will remind engineers to handle defects to reduce the waste of manufacturing resources. In practice, not all process stations have functional tests. Therefore, we use the concept of the Bayesian theorem to simulate the missing station data. In the measurement part, we construct the spatio-temporal accuracy metrics through the similarity metrics and the proposed growth trajectory metrics, which can measure the spatio-temporal effect of the system output. Finally, this study conducts an empirical study of Taiwanese semiconductor packaging manufacturers. The results show that the SBM predicted by the proposed system is 12 times higher than the random generation on the score of spatio-temporal accuracy. That is, the system can effectively predict the SBM images that will appear in future stations and the defect patterns to which they belong. The proposed spatio-temporal accuracy metrics can also measure the correctness of the SBM predicted by the system under the spatio-temporal effect.

    中文摘要 i Abstract ii Acknowledgements iii Table of Contents v List of Figures vii List of Tables viii Chapter 1. Introduction 1 1.1. Background & Motivation 1 1.1.1. Background 2 1.1.2. Motivation 5 1.2. Research Aim 7 1.3. Thesis Organization 9 Chapter 2. Literature Review 11 2.1 Fault Detection and Diagnosis 11 2.2. Data Augmentation 13 2.2.1. Traditional Transformations 13 2.2.2. Machine Learning Method 14 2.3. Spatio-Temporal Prediction 16 2.3.1. CNN-LSTM 18 2.3.2. ConvLSTM 20 2.4. Performance Measure 22 2.4.1. F1-Score 23 2.4.2. Jaccard Index 24 Chapter 3. Methodology 25 3.1. Methodology Design 25 3.2. Data Preprocessing Module 27 3.3. SBM Simulation Module 28 3.4. SBM Prediction Module and SBM Recognition Module 32 3.5. Distribution Binarization 35 3.6. Evaluation Method 36 Chapter 4. Empirical Study 41 4.1 Experiment Design 41 4.1.1. Introduction to Experiment 41 4.1.2. Environment of Experiment 42 4.1.3. Experiment Target 43 4.2. SBM Database 44 4.2.1. Data Acquisition and Preprocessing 44 4.2.2. SBM Label Define 45 4.2.3. Data Augmentation 46 4.3. SBM Simulation 49 4.3.1. Sensitivity Analysis for Likelihood Weighting Equation 49 4.3.2. Sensitivity Analysis for Posterior Weighting Equation 52 4.4. SBM Pattern Classification 54 4.5. Each Station SBM Prediction 57 4.6. Summary of Empirical Study 62 Chapter 5. Conclusion 64 5.1. Summary and Contribution 64 5.2. Future Research 66 References 68

    [1] Abbasimehr, H., et al. (2020). "An optimized model using LSTM network for demand forecasting." Computers & Industrial Engineering 143: 106435.
    [2] Azzalini, D., et al. (2021). "A minimally supervised approach based on variational
    autoencoders for anomaly detection in autonomous robots." IEEE Robotics and
    Automation Letters 6(2): 2985-2992.
    [3] Bai, S., et al. (2018). "An empirical evaluation of generic convolutional and
    recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271.
    [4] Batool, U., et al. (2021). "A Systematic Review of Deep Learning for Silicon
    Wafer Defect Recognition." Ieee Access.
    [5] Chen, F.-L. and S.-F. Liu (2000). "A neural-network approach to recognize defect
    spatial pattern in semiconductor fabrication." IEEE Transactions on Semiconductor
    Manufacturing 13(3): 366-373.
    [6] Donahue, J., et al. (2015). Long-term recurrent convolutional networks for visual
    recognition and description. Proceedings of the IEEE conference on computer vision and pattern recognition.
    [7] Ezzat, A. A., et al. (2021). "A graph-theoretic approach for spatial filtering and its
    impact on mixed-type spatial pattern recognition in wafer bin maps." IEEE Transactions on Semiconductor Manufacturing 34(2): 194-206.
    [8] Fan, M., et al. (2016). Wafer defect patterns recognition based on OPTICS and
    multi-label classification. 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE.
    [9] Fan, S. K. S., et al. (2020). "Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing." IEEE Transactions on Automation Science and Engineering 17(4): 1925-1936.
    [10] Goodfellow, I., et al. (2014). "Generative adversarial nets." Advances in neural information processing systems 27.
    [11] Hansen, M. H., et al. (1997). "Monitoring wafer map data from integrated circuit fabrication processes for spatially clustered defects." Technometrics 39(3): 241-253.
    [12] He, K., et al. (2015). "Deep Residual Learning for Image Recognition." arXiv
    pre-print server.
    [13] Hochreiter, S. and J. Schmidhuber (1997). "Long short-term memory." Neural
    computation 9(8): 1735-1780.
    [14] Hsieh, Y.-M., et al. (2021). "Convolutional Neural Networks for Automatic
    Virtual Metrology." IEEE Robotics and Automation Letters 6(3): 5720-5727.
    [15] Hung, S.-Y., et al. (2019). "Data science for delamination prognosis and online
    batch learning in semiconductor assembly process." IEEE Transactions on
    Components, Packaging and Manufacturing Technology 10(2): 314-324.
    [16] Islam, M. Z., et al. (2020). "A combined deep CNN-LSTM network for the
    detection of novel coronavirus (COVID-19) using X-ray images." Informatics in
    Medicine Unlocked 20: 100412.
    [17] Jin, C. H., et al. (2019). "A novel DBSCAN-based defect pattern detection and
    classification framework for wafer bin map." IEEE Transactions on Semiconductor
    Manufacturing 32(3): 286-292.
    [18] Kim, E., et al. (2019). "Fault Detection and Diagnosis Using Self-Attentive
    Convolutional Neural Networks for Variable-Length Sensor Data in Semiconductor
    Manufacturing." IEEE Transactions on Semiconductor Manufacturing 32(3): 302-309.
    [19] Kim, T.-Y. and S.-B. Cho (2019). "Predicting residential energy consumption
    using CNN-LSTM neural networks." Energy 182: 72-81.
    [20] Kim, T. S. and A. Reiter (2017). Interpretable 3d human action analysis with
    temporal convolutional networks. 2017 IEEE conference on computer vision and
    pattern recognition workshops (CVPRW), IEEE.
    [21] Koshoubu, N., et al. (2000). "Advanced flip chip bonding techniques using
    transferred microsolder bumps." IEEE transactions on components and packaging
    technologies 23(2): 399-404.
    [22] Lea, C., et al. (2017). Temporal convolutional networks for action segmentation
    and detection. proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    [23] Lea, C., et al. (2016). "Temporal Convolutional Networks for Action Segmentation and Detection." arXiv pre-print server.
    [24] Lee, C.-Y., et al. (2020). "In-line predictive monitoring framework." IEEE
    Transactions on Automation Science and Engineering 18(4): 1668-1678.
    [25] Li, B. and L. Han (2013). Distance Weighted Cosine Similarity Measure for Text
    Classification, Springer Berlin Heidelberg: 611-618.
    [26] Li, B., et al. (2021). "Self-Attention ConvLSTM and Its Application in RUL
    Prediction of Rolling Bearings." IEEE Transactions on Instrumentation and
    Measurement 70: 1-11.
    [27] Lim, S., et al. (2015). Flux challenges in flip-chip die-attach. 2015 IEEE 17th
    Electronics Packaging and Technology Conference (EPTC), IEEE.
    [28] Lin, Z., et al. (2020). "Self-Attention ConvLSTM for Spatiotemporal Prediction."
    Proceedings of the AAAI Conference on Artificial Intelligence 34(07): 11531-11538.
    [29] Liu, C.-W. and C.-F. Chien (2013). "An intelligent system for wafer bin map
    defect diagnosis: An empirical study for semiconductor manufacturing." Engineering Applications of Artificial Intelligence 26(5-6): 1479-1486.
    [30] Lu, G. Y. and D. W. Wong (2008). "An adaptive inverse-distance weighting
    spatial interpolation technique." Computers & geosciences 34(9): 1044-1055.
    [31] Masci, J., et al. (2011). Stacked Convolutional Auto-Encoders for Hierarchical
    Feature Extraction, Springer Berlin Heidelberg: 52-59.
    [32] Mikolajczyk, A. and M. Grochowski Data augmentation for improving deep
    learning in image classification problem, IEEE.
    [33] Nelson, D. M. Q., et al. Stock market's price movement prediction with LSTM
    neural networks, IEEE.
    [34] Niwattanakul, S., et al. (2013). Using of Jaccard coefficient for keywords
    similarity. Proceedings of the international multiconference of engineers and computer scientists.
    [35] Piao, M., et al. (2018). "Decision tree ensemble-based wafer map failure pattern
    recognition based on radon transform-based features." IEEE Transactions on Semiconductor Manufacturing 31(2): 250-257.
    [36] Pratikakis, I., et al. (2012). ICFHR 2012 Competition on Handwritten Document
    Image Binarization (H-DIBCO 2012). 2012 International Conference on Frontiers in
    Handwriting Recognition: 817-822.
    [37] Rostami, H., et al. (2018). "Automatic equipment fault fingerprint extraction for
    the fault diagnostic on the batch process data." Applied Soft Computing 68: 972-989.
    [38] Shen, P.-C. and C.-Y. Lee (2022). "Wafer Bin Map Recognition with Autoencoder-based Data Augmentation in Semiconductor Assembly Process." IEEE
    Transactions on Semiconductor Manufacturing.
    [39] Shi, X., et al. (2015). "Convolutional LSTM network: A machine learning
    approach for precipitation nowcasting." Advances in neural information processing
    systems 28.
    [40] Szegedy, C., et al. (2014). "Going Deeper with Convolutions." arXiv pre-print
    server.
    [41] Wang, C.-H., et al. (2006). "Detection and classification of defect patterns on
    semiconductor wafers." IIE transactions 38(12): 1059-1068.
    [42] Wang, D., et al. DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel
    Demand Prediction, IEEE.
    [43] Zhao, G., et al. Research advances in fault diagnosis and prognostic based on
    deep learning, IEEE.

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE