| 研究生: |
胡瑜凌 Hu, Yvonne Yu-Ling |
|---|---|
| 論文名稱: |
基於深度學習還原與預測快速且清晰之深層時域聚焦多光子顯微生物影像 Fast and Clear Temporal Focusing Multiphoton Microscopy for Bioimaging via Deep Learning-Based Restoration and Extended Depth Prediction |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 時域聚焦顯微術 、結構照明 、希爾伯特-黃轉換 、U-Net 、多階段影像還原 、跨模態影像對位 、深度影像預測 、果蠅蕈狀體 |
| 外文關鍵詞: | temporal focusing microscopy, structured illumination, Hilbert-Huang transform, U-Net, multi-stage image restoration, cross-modality image registration, deep image prediction, drosophila mushroom body |
| ORCID: | 0000-0002-5297-913X |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
時域聚焦多光子顯微術(temporal focusing multiphoton microscopy,TFMPM)是一種具有廣視域的多光子成像技術,可廣泛應用於高速獲取生物樣本的高解析度影像。然而,在面照明下,TFMPM影像常常受到固有雜訊、失真和低訊噪比的影響,降低影像的精確度並妨礙後續的訊號分析。本論文首先利用傅立葉光學模擬TFMPM成像過程,以推斷透過結構化照明進行訊號調變的最佳空間頻率,並採用了希爾伯特-黃轉換(Hilbert-Huang transform,HHT)方法,透過兩張在相同空間頻率下相位差為180度的TFMPM影像,還原成一張完整的影像,藉由減少TFMPM影像的軸向激發限制來提高訊躁比,同時避免由數位微型鏡裝置(digital micromirror device)提供的離散模式所引起的殘留圖案。然而,利用HHT重建影像會使得原本TFMPM的影像取得速度減半,進而失去其優勢。
論文進一步提出了基於U-Net的多階段(multi-stage)深度學習架構,透過多個功能塊,用於逐步改善恢復影像的品質。實驗結果證明了所提方法的有效性。透過使用雙階段U-Net進行體外TFMPM影像還原實驗,在深層獲得的影像中顯著改善了結構相似度(structural similarity index,SSIM)。還原過程的第二階段提供了增量的增強效果,使得影像的特徵正加突出,且明顯改善影像對比度。透過使用三階段U-Net進行活體TFMPM影像還原,凸顯了低訊躁比輸入影像所帶來的挑戰。藉由轉移學習,還原的準確性可獲得大幅的提升,從而改善了結構形態和局部強度分佈。
此外,本論文提出了一種基於循環神經網絡(recurrent neural network)和卷積長短期記憶機制(convolutional long short-term memory)的深度學習物理預測網絡,用於深層影像預測以推斷TFMPM無法獲得的圖像。該網絡通常運用在影片,藉由物理模型推斷影片中物體的趨勢,來預測未來的影像。初步結果顯示預測網絡雖然能夠產生非常接近標準的型態,但卻無法預測出影像中的細節,如神經細胞的樣貌與位置。雖然此網路可以從恢復的TFMPM體積中推斷出深層未獲得的影像層,但是在細節預測的部分仍須進一步加強。
總結,本論文對TFMPM的數值模擬驗證和HHT在影像重建中的有效性做出了貢獻。改善了在極短時間內獲取TFMPM影像的清晰度,進而實現了在不同科學領域中對生物樣本進行更精確的分析和解釋。本研究亦提出深度學習影像還原方法,提供一個不需犧牲取像速度,且又能提高TFMPM影像品質的解決方案,從而實現對生物結構和動態過程的更精確和可靠的分析。
Temporal focusing microscopy (TFMPM) is a powerful imaging technique widely applied in various scientific fields for capturing high-resolution images of biological specimens in high acquisition rate. However, under plane illumination, TFMPM images often suffer from inherent noise, distortion, and low signal-to-noise ratio (SNR), which can hinder accurate analysis and interpretation. In this dissertation, the process of TFMPM imaging is numerically simulated using Fourier optics to infer the optimal spatial frequency for the signal modulation via structured illumination. The Hilbert-Huang transform (HHT) is employed by taking two TFMPM images under same spatial frequency with a phase difference of 180 to reconstruct the underlying signals and improve the SNR by reducing axial excitation confinement of TFMPM images, while preventing pattern residual aroused due to digitalized pattern provided by digital micromirror device. However, the HHT method compromises the speed advantage of TFMPM by a factor of 2.
A deep learning multi-stage approach, which is based on the U-Net architecture comprises various functional blocks, is proposed for image restoration to progressively refine the restored images. Experimental results demonstrate the effectiveness of the proposed approach. In-vitro TFMPM image restoration experiments using a two-stage U-Net show significant improvements in structural similarity for images obtained at deeper depths. The second stage of the restoration process provides incremental enhancements, resulting in more contextualized features and improved contrast. In-vivo TFMPM image restoration using a three-stage U-Net reveals the challenges posed by low SNR in input images. However, by employing transfer learning, the restoration accuracy is improved, leading to better morphology and local intensity distribution of structures.
In addition, this dissertation proposes a deep learning physics-based prediction network based on recurrent neural networks and convolutional long short-term memory mechanisms, which is commonly used in video applications to predict future images by inferring the trends of objects in the video based on physical models, for deep layer image prediction to infer images that cannot be obtained by TFMPM. Preliminary results show that while the prediction network can generate morphologies that are very close to the ground truth, it struggles to predict fine details such as the appearance and location of neural cells in the images. Although this network can infer the unobtained deeper layers of images from the restored TFMPM volume, further improvements are needed in the aspect of detailed prediction.
In summary, this dissertation contributes to the validation of numerical simulation of TFMPM and the effectiveness of the HHT in image reconstruction. The enhancement of TFMPM image clarity under extremely short acquisition time is addressed, enabling more precise analysis and interpretation of biological specimens across various scientific fields. Furthermore, the generation of TFMPM image in deeper layer is obtained, which shows the potential in thick tissue imaging that goes beyond the limitation of penetration depth in TFMPM.
1. M. Göppert-Mayer, "Über Elementarakte mit Zwei Quantensprüngen," Annalen der Physik 401, 273–294 (1931).
2. W. Kaiser and C. G. Garrett, "Two-photon excitation in CaF2: Eu2+," Physical Review Letters 7, 229–231 (1961).
3. I. D. Abella, "Optical double-photon absorption in cesium vapor," Physical Review Letters 9, 453–455 (1962).
4. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73–76 (1990).
5. J. Nakai, M. Ohkura, and K. Imoto, "A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein," Nature Biotechnology 19, 137–141 (2001).
6. P. J. Campagnola, M.-de Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophysical Journal 77, 3341–3349 (1999).
7. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nature Biotechnology 21, 1369–1377 (2003).
8. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," The Journal of Neuroscience 24, 999–1003 (2004).
9. M. E. Didier, O. B. Tarun, P. Jourdain, P. Magistretti, and S. Roke, "Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level," Nature Communications 9, 5287–5293 (2018).
10. X. S. Xie and H. P. Lu, "Single-molecule enzymology," Journal of Biological Chemistry 274, 15967–15970 (1999).
11. F. Cannone, G. Chirico, and A. Diaspro, "Two-photon interactions at single fluorescent molecule level," Journal of Biomedical Optics 8, 391 (2003).
12. R. Heim, A. B. Cubitt, and R. Y. Tsien, "Improved green fluorescence," Nature 373, 663–664 (1995).
13. B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, "Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing," Biophysical Journal 104, 51–62 (2013).
14. J. Nakai, M. Ohkura, and K. Imoto, "A high signal-to-noise ca2+ probe composed of a single green fluorescent protein," Nature Biotechnology 19, 137–141 (2001).
15. L. Kaestner, A. Scholz, Q. Tian, S. Ruppenthal, W. Tabellion, K. Wiesen, H. A. Katus, O. J. Müller, M. I. Kotlikoff, and P. Lipp, "Genetically encoded Ca2+ indicators in cardiac myocytes," Circulation Research 114, 1623–1639 (2014).
16. Y. N. Tallini, M. Ohkura, B.-R. Choi, G. Ji, K. Imoto, R. Doran, J. Lee, P. Plan, J. Wilson, H.-B. Xin, A. Sanbe, J. Gulick, J. Mathai, J. Robbins, G. Salama, J. Nakai, and M. I. Kotlikoff, "Imaging Cellular Signals in the heart in vivo : Cardiac expression of the high-signal Ca2+ indicator GCaMP2," Proceedings of the National Academy of Sciences 103, 4753–4758 (2006).
17. N. C. Chi, R. M. Shaw, B. Jungblut, J. Huisken, T. Ferrer, R. Arnaout, I. Scott, D. Beis, T. Xiao, H. Baier, L. Y. Jan, M. Tristani-Firouzi, and D. Y. Stainier, "Genetic and physiologic dissection of the vertebrate cardiac conduction system," PLoS Biology 6, e109 (2008).
18. H. Dana, Y. Sun, B. Mohar, B. K. Hulse, A. M. Kerlin, J. P. Hasseman, G. Tsegaye, A. Tsang, A. Wong, R. Patel, J. J. Macklin, Y. Chen, A. Konnerth, V. Jayaraman, L. L. Looger, E. R. Schreiter, K. Svoboda, and D. S. Kim, "High-performance calcium sensors for imaging activity in neuronal populations and microcompartments," Nature Methods 16, 649–657 (2019).
19. J. P. Nguyen, F. B. Shipley, A. N. Linder, G. S. Plummer, M. Liu, S. U. Setru, J. W. Shaevitz, and A. M. Leifer, "Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans," Proceedings of the National Academy of Sciences 113, E1074 (2015).
20. M. Z. Lin and M. J. Schnitzer, "Genetically encoded indicators of neuronal activity," Nature Neuroscience 19, 1142–1153 (2016).
21. J. Cichon and W.-B. Gan, "Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity," Nature 520, 180–185 (2015).
22. W. Göbel, B. M. Kampa, and F. Helmchen, "Imaging cellular network dynamics in three dimensions using fast 3D laser scanning," Nature Methods 4, 73–79 (2006).
23. K. H. Kim, C. Buehler, and P. T. So, "High-speed, two-photon scanning microscope," Applied Optics 38, 6004–6009 (1999).
24. Y. Zhang, M. Rózsa, Y. Liang, D. Bushey, Z. Wei, J. Zheng, D. Reep, G. J. Broussard, A. Tsang, G. Tsegaye, S. Narayan, C. J. Obara, J.-X. Lim, R. Patel, R. Zhang, M. B. Ahrens, G. C. Turner, S. S.-H. Wang, W. L. Korff, E. R. Schreiter, K. Svoboda, J. P. Hasseman, I. Kolb, and L. L. Looger, "Fast and sensitive GCaMP calcium indicators for imaging neural populations," Nature 615, 884–891 (2023).
25. T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature 499, 295–300 (2013).
26. E. M. Hillman, V. Voleti, K. Patel, W. Li, H. Yu, C. Perez-Campos, S. E. Benezra, R. M. Bruno, and P. T. Galwaduge, "High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets," Current Opinion in Neurobiology 50, 190–200 (2018).
27. J. R. Bumstead, "Designing a large field-of-view two-photon microscope using optical invariant analysis," Neurophotonics 5, 025001–025020 (2018).
28. J. Bewersdorf, R. Pick, and S. W. Hell, "Multifocal multiphoton microscopy," Optics Letters 23, 655–657 (1998).
29. R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, and M. Sauer, "Application of multiline two-photon microscopy to functional in vivo imaging," Journal of Neuroscience Methods 151, 276–286 (2006).
30. R. Salomé, Y. Kremer, S. Dieudonné, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, "Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors," Journal of Neuroscience Methods 154, 161–174 (2006).
31. N. Shafeghat, M. Heidarinejad, N. Murata, H. Nakamura, and T. Inoue, "Optical detection of neuron connectivity by random access two-photon microscopy," Journal of Neuroscience Methods 263, 48–56 (2016).
32. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, "Fast Two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes," Nature Methods 9, 201–208 (2012).
33. A. H. Voie, D. H. Burns, and F. A. Spelman, "Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens," Journal of Microscopy 170, 229–236 (1993).
34. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, "Deep and fast live imaging with two-photon scanned light-sheet microscopy," Nature Methods 8, 757–760 (2011).
35. M. Weber, M. Mickoleit, and J. Huisken, "Multilayer mounting for long-term light sheet microscopy of zebrafish," Journal of Visualized Experiments, 84, e51119 (2014).
36. E. S. Liau, Y.-P. Yen, and J.-A. Chen, "Visualization of motor axon navigation and quantification of axon arborization in mouse embryos using light sheet fluorescence microscopy," Journal of Visualized Experiments 135, e57546 (2018).
37. J. Ratke, F. Krämer, and F. Strobl, "Simultaneous live imaging of multiple insect embryos in sample chamber-based light sheet fluorescence microscopes," Journal of Visualized Experiments, 163, e61713 (2020).
38. D. Oron, E. Tal, and Y. Silberberg, "Scanningless depth-resolved microscopy," Optics Express 13, 1468–1476 (2005).
39. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Optics Express 13, 2153–2159 (2005).
40. T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, "Brain-wide 3D imaging of neuronal activity in caenorhabditis elegans with sculpted light," Nature Methods 10, 1013–1020 (2013).
41. S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, "Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain," Scientific Reports 7, 40041 (2017).
42. J.-N. Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C.-H. Lien, and S.-J. Chen, "Temporal focusing-based multiphoton excitation microscopy via digital micromirror device," Optics Letters 39, 3134–3137 (2014).
43. C.-Y. Chang, C.-H. Lin, C.-Y. Lin, Y.-D. Sie, Y. Y. Hu, S.-F. Tsai, and S.-J. Chen, "Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging," Journal of Biophotonics 11, e201600287 (2018).
44. E. Tal, D. Oron, and Y. Silberberg, "Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing," Optics Letters 30, 1686–1688 (2005).
45. Y. Xue, K. P. Berry, J. R. Boivin, D. Wadduwage, E. Nedivi, and P. T. So, "Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy," Biomedical Optics Express 9, 5654–5666 (2018).
46. C.-Y. Chang, C.-Y. Lin, Y. Y. Hu, S.-F. Tsai, F.-C. Hsu, and S.-J. Chen, "Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging," Journal of Biomedical Optics 26, 016501 (2021).
47. A. Bègue, E. Papagiakoumou, B. Leshem, R. Conti, L. Enke, D. Oron, and V. Emiliani, "Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation," Biomedical Optics Express 4, 2869–2879 (2013).
48. N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, "Three-dimensional scanless holographic optogenetics with temporal focusing (3D-shot)," Nature Communications 8, 1288 (2017).
49. D. Kim and P. T. So, "High-throughput three-dimensional lithographic microfabrication," Optics Letters 35, 1602–1604 (2010).
50. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, "Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation," Optics Express 20, 19030–19038 (2012).
51. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, "High-throughput fabrication of gray-level biomicrostructures via temporal focusing excitation and laser pulse control," Journal of Biomedical Optics 18, 075004 (2013).
52. M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods 3, 793–796 (2006).
53. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642–1645 (2006).
54. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy," Optics Letters 19, 780–782 (1994).
55. M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. short communication," Journal of Microscopy 198, 82–87 (2000).
56. F. Chen, P. W. Tillberg, and E. S. Boyden, "Expansion microscopy," Science 347, 543–548 (2015).
57. P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, "Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies," Nature Biotechnology 34, 987–992 (2016).
58. J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, "Iterative Expansion Microscopy," Nature Methods 14, 593–599 (2017).
59. C. K. Cahoon, Z. Yu, Y. Wang, F. Guo, J. R. Unruh, B. D. Slaughter, and R. S. Hawley, "Superresolution expansion microscopy reveals the three-dimensional organization of the drosophila synaptonemal complex," Proceedings of the National Academy of Sciences 114, E6857–E6866 (2017).
60. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, "Multilayer three-dimensional super resolution imaging of thick biological samples," Proceedings of the National Academy of Sciences 105, 20221–20226 (2008).
61. C.-H. Lien, C.-Y. Lin, S.-J. Chen, and F.-C. Chien, "Dynamic particle tracking via temporal focusing multiphoton microscopy with astigmatism imaging," Optics Express 22, 27290–27299 (2014).
62. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, "Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination," Biomedical Optics Express 4, 2396–2410 (2013).
63. L.-C. Cheng, C.-H. Lien, Y. Da Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, "Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device," Biomedical Optics Express 5, 2526–2536 (2014).
64. C. Belthangady and L. A. Royer, "Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction," Nature Methods 16, 1215–1225 (2019).
65. M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, and E. W. Myers, "Content-aware image restoration: Pushing the limits of fluorescence microscopy," Nature Methods 15, 1090–1097 (2018).
66. B. Manifold, E. Thomas, A. T. Francis, A. H. Hill, and D. Fu, "Denoising of stimulated Raman scattering microscopy images via deep learning," Biomedical Optics Express 10, 3860–3874 (2019).
67. S. Chaudhary, S. Moon, and H. Lu, "Fast, efficient, and accurate neuro-imaging denoising via supervised Deep Learning," Nature Communications 13, 5156 (2022).
68. N. Borhani, A. J. Bower, S. A. Boppart, and D. Psaltis, "Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy," Biomedical Optics Express 10, 1339–1350 (2019).
69. K. de Haan, Y. Zhang, J. E. Zuckerman, T. Liu, A. E. Sisk, M. F. Diaz, K.-Y. Jen, A. Nobori, S. Liou, S. Zhang, R. Riahi, Y. Rivenson, W. D. Wallace, and A. Ozcan, "Deep learning-based transformation of H&E stained tissues into special stains," Nature Communications 12, 4884 (2021).
70. H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Günaydın, L. A. Bentolila, C. Kural, and A. Ozcan, "Deep learning enables cross-modality super-resolution in fluorescence microscopy," Nature Methods 16, 103–110 (2018).
71. E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, "Deep-STORM: super-resolution single-molecule microscopy by deep learning," Optica 5, 458–464 (2018).
72. A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, "A Review on Deep Learning Techniques Applied to Semantic Segmentation," arXiv:1704.06857 (2017).
73. W. Rawat and Z. Wang, "Deep convolutional neural networks for Image Classification: A Comprehensive Review," Neural Computation 29, 2352–2449 (2017).
74. G. Haskins, U. Kruger, and P. Yan, "Deep learning in medical image registration: A survey," Machine Vision and Applications 31, 8 (2020).
75. H. Choi, E. Y. Yew, B. Hallacoglu, S. Fantini, C. J. Sheppard, and P. T. So, "Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination," Biomed. Opt. Express 4, 995–1005 (2013).
76. L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, "Super-resolution microscopy demystified," Nature Cell Biology 21, 72–84 (2019).
77. J. W. Lichtman and J.-A. Conchello, "Fluorescence microscopy," Nature Methods 2, 910–919 (2005).
78. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, "Crystal structure of the aequorea victoriagreen fluorescent protein," Science 273, 1392–1395 (1996).
79. T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki, "A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications," Nature Biotechnology 20, 87–90 (2002).
80. C.-W. Hsu, C.-Y. Lin, Y. Y. Hu, C.-Y. Wang, S.-T. Chang, A.-S. Chiang, and S.-J. Chen, "Three-dimensional-generator U-net for dual-resonant scanning multiphoton microscopy image inpainting and denoising," Biomedical Optics Express 13, 6273–6283 (2022).
81. E. Papagiakoumou, E. Ronzitti, and V. Emiliani, "Scanless two-photon excitation with temporal focusing," Nature Methods 17, 571–581 (2020).
82. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, "Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle," Journal of Biomedical Optics 14, 030502 (2009).
83. K. Nadeau, A. J. Durkin, and B. J. Tromberg, "Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain," Journal of Biomedical Optics 19, 056013 (2014).
84. K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, "Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier," Biomedical Optics Express 8, 2796–2806 (2017).
85. J. Wen, Y. Zhang, and M. Xiao, "The Talbot effect: Recent advances in classical optics, nonlinear optics, and Quantum Optics," Advances in Optics and Photonics 5, 83–130 (2013).
86. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 903–995 (1998).
87. K. Patorski, M. Trusiak, and T. Tkaczyk, "Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing," Optical Express 22, 9517–9527 (2014).
88. J. Su, B. Xu, and H. Yin, "A survey of deep learning approaches to image restoration," Neurocomputing 487, 46–65 (2022).
89. G. Chantas, N. P. Galatsanos, R. Molina, and A. K. Katsaggelos, "Variational bayesian image restoration with a product of spatially weighted total variation image priors," IEEE Transactions on Image Processing 19, 351–362 (2010).
90. K. Zhang, W. Zuo, S. Gu, and L. Zhang, "Learning deep CNN denoiser prior for image restoration," 2017 IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) (2017).
91. Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. S. Kweon, "Learning a deep convolutional network for light-field image Super-Resolution," 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015).
92. M. W. Gardner and S. R. Dorling, "Artificial Neural Networks (the multilayer perceptron)—a review of applications in the Atmospheric Sciences," Atmospheric Environment 32, 2627–2636 (1998).
93. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE 86, 2278–2324 (1998).
94. O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," Lecture Notes in Computer Science, 234–241 (2015).
95. S. Lee, M. Negishi, H. Urakubo, H. Kasai, and S. Ishii, "Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration," Neural Networks 125, 92–103 (2020).
96. F. Kokkinos and S. Lefkimmiatis, "Deep image demosaicking using a cascade of convolutional residual denoising networks," Computer Vision – ECCV 2018 317–333 (2018).
97. Y. A. Farha and J. Gall, "MS-TCN: Multi-stage temporal convolutional network for action segmentation," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019).
98. S. Voronin, "Multi-stage image restoration in high noise and Blur Settings," Computer and Information Science 12, 72 (2019).
99. S. Lin, "The making of the drosophila mushroom body," Frontiers in Physiology 14, 1091248 (2023).
100. F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, "ResUNet-A: A deep learning framework for semantic segmentation of remotely sensed data," ISPRS Journal of Photogrammetry and Remote Sensing 162, 94–114 (2020).
101. B. B. Avants, N. J. Tustison, J. Wu, P. A. Cook, and J. C. Gee, “An open source multivariate framework for N-tissue segmentation with evaluation on public data,” Neuroinformatics 9, 381–400 (2011).
102. G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, "VoxelMorph: A learning framework for deformable medical image registration," IEEE Transactions on Medical Imaging 38, 1788–1800 (2019).
103. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, "Multi-stage progressive image restoration," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021).
104. L. Chen, X. Lu, J. Zhang, X. Chu, and C. Chen, "HINet: Half instance normalization network for image restoration," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2021).
105. Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, "ECA-net: Efficient channel attention for deep convolutional neural networks," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020).
106. D. Ulyanov, A. Vedaldi, and V. Lempitsky, "Instance normalization: The missing ingredient for fast stylization," arXiv:1607.08022v3 (2016).
107. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
108. M. Suin, K. Purohit, and A. N. Rajagopalan, "Spatially-attentive patch-hierarchical network for adaptive motion Deblurring," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020).
109. V. Le Guen and N. Thome, "Disentangling physical dynamics from unknown factors for unsupervised video prediction," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020).
110. S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, "Convolutional LSTM network: A machine learning approach for precipitation nowcasting," NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems 1, 802–810 (2015).
111. C. Shi, Z. Zhang, W. Zhang, C. Zhang, and Q. Xu, "Learning multiscale temporal–spatial–spectral features via a multipath convolutional LSTM neural network for change detection with hyperspectral images," IEEE Transactions on Geoscience and Remote Sensing 60, 1–16 (2022).
112. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, "CBAM: Convolutional block attention module," arXiv:1807.06521 (2018).
113. Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome, and P. Gallinari, "Augmenting physical models with deep networks for complex dynamics forecasting," Journal of Statistical Mechanics: Theory and Experiment 2021, 124012 (2021).
校內:2028-06-01公開