| 研究生: |
陳克維 Chen, Ke-Wei |
|---|---|
| 論文名稱: |
波形渠道連接多孔性區域的熱交換增強:燃料電池優化設計 Enhancement of Heat Exchange in a Wavy Channnel Linked to a Porous Domain:Optimization Design for Fuel Cells |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 共同指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 氣體擴散層 、波浪狀渠道 、正弦波型渠道 、最佳化 、全因子法 、基因演算法 |
| 外文關鍵詞: | gas diffusion layer, wavy-like channel, wavy channels, CFD, numerical optimization, genetic algorithm |
| 相關次數: | 點閱:93 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用多參數之最佳化程序與實驗設計方法(DOE),以全因子法(full factorial experimental design)及基因演算法(genetic algorithm method)搭配計算流體力學(CFD),以數值模擬一氣體擴散層連接波浪狀/波形渠道。文中所述之模型基本上是以一質子交換膜燃料電池內之陽極氣體流道之流場與熱傳特性作數值研究。利用Forchheimer-Brinkman所推導之達西模型及多孔性材質之雙方程能量模型(two-equation energy model)描述多孔性材質內部的流場及熱傳特性,應用控制體積法結合SIMPLE法離散求解一三維穩態層流之橢圓偏微分方程問題。
首先將波浪狀渠道之模擬結果與文獻中可用之結果作仔細的驗證,再針對波形渠道做進一步的研究。波形渠道數值計算的研究參數包含:雷諾數(Re)、波形振幅 α、波數β、擴散層孔隙率ε。研究探討的範圍為200≦Re≦1000,波形振幅0.1≦α≦0.3,波數2≦β≦10,擴散層孔隙率0.4≦ε≦0.5。
文中提供雷諾數(Re)、波形振幅(α)、波數(β)、擴散層孔隙率(ε)四參數相互影響與局部紐賽數(Nu)和平均紐賽數(Nu)之比較。結果顯示有加入波浪狀及波型渠道的流道在計算局部紐賽數及平均紐賽數均明顯優於直流道的狀況,在入口處有最大值,而隨著流動方向而遞減,並且隨著雷諾數增加而提高。
文中另外利用全因子法(full factorial experimental design)和基因演算法(genetic algorithm method)得到目標函數熱性能係數E(Thermal Performance Factor)與三設計參數波形振幅α、波數β、擴散層孔隙率ε之間的關係式,並得到在不同雷諾數下之最佳幾何外型。
In this study, the multi-parameter constrained optimization procedure integrating the design of experiments (DOE), full factorial experimental design (FFED), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design a gas diffusion layer (GDL) linked to a wavy-like/wavy channel. This model is on the basis of an anode flow channel inside a proton exchange membrane fuel cells (PEMFC) and the fluid flow and heat transfer characteristics have been investigated numerically. The Forchheimer-Brinkman extended Darcy model and two-equation energy model are adopted to describe the fluid flow and heat transfer characteristics in the porous media. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for laminar forced convection are solved numerically using the finite volume approach. The two energy equations in porous media are solved using finite volume method with SIMPLE technique.
Solutions within wavy-like channel are first validated with available results in the literature and wavy channel is further studied. Numerical computations are performed with wavy channel for the parameters studied Reynolds number (Re), wave amplitude α, wave number β and gas diffusion layer porosity ε in the range of 200≦Re≦1000, 0.1≦α≦0.3, 2≦β≦10, 0.4≦ε ≦0.5 respectively.
The interactive effects of Re,α,β, and ε on the local Nusselt number (Nu) and average Nusselt number(Nu) are provided in this study. The results show that computations of local and average Nusselt number within wavy-like/wavy channel are enhanced compared to the straight channel. There is a maximum value of local Nusselt number at the entrance, and decrease as flow direction, and as the Reynolds number increases.
In addition, the optimization of this problem is also presented by using full factorial experimental design and genetic algorithm(GA) method. The objective function E which is defined as Thermal Performance Factor has developed a correlation function with three design parameters, wave amplitude α, wave number β and gas diffusion layer porosity ε. According to the optimal results, optimum shape conditions were obtained at three different Reynolds numbers.
[1] L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells fundamentals
and application”, Fuel Cells 2001, 1(1), 5-39
[2] J.S. Yi, T.V. Nguyenm, “Multicomponent transport in porous electrodes
of proton exchange membrane fuel cells using the interdigitated gas
distributors”, Journal of Electrochemical Society 1999, 146, 38–45.
[3] W.He, J.S. Yi,T.V. Nguyen,“Two-phase flow model of the cathode of
PEM fuel cells using interdigitated Flow Fields”, AICHE Journal
2000,46,2053–2064.
[4] V.Gurau, “Two-dimensional model for proton exchange membrane fuel
cells” ,AICHE Journal 1998,44,2410–2422.
[5] D. Singh, D.M. Lu, N. Djilali, “A two-dimensional analysis of mass
transport in proton exchange membrane fuel cells” International Journal
of Engineering Science 1999,39,431-452
[6] A. Kazim, “Modeling of performance of PEM fuel cells with
conventional and interdigitated flow filed”, Journal of Applied
Electrochemistry 1999,Vol. 29, pp.1409-1416 .
[7] Z.H. Wang, C.Y. Wang, K.S. Chen, “Two-phase flow and transport in the
air cathode of PEM fuel cells”, Journal of Power Sources 2001, 94,40–50.
[8] L. You, H. Liu, “A two-phase flow and transport model for the cathode of
PEM fuel cells” International Journal of Heat and Mass Transfer 2002,
45,2277–2287.
[9] A. Rowe, X. Li, “Mathematical modeling of proton exchange membrane
fuel cells,” Journal of Power Sources 2001,102,82-96.
[10] W.M. Yan, C.Y. Soong Falin Chen, H.S. Chu, “Effects of flow
distributor geometry and diffusion layer porosity on reactant gas transport
and performance of proton exchange membrane fuel cells”, Journal of
Power Sources 2004, 125, 27-39.
[11] E.Hontañón,M.J.Escudero, C.Bautista,P.L.Garcίa-Ybarra andL.Daza,
“Optimisation of flow-field in polymer electrolyte membrane fuel cells
using computational fluid dynamics techniques”, 2000, 86, 363-368.
[12] K. Tüber, A. Oedegaard , M. Hermann, C. Hebling, “Investigation of
fractal flow-fields in portable proton exchange membrane and direct
methanol fuel cells”Journal of Power Sources 2004, 131, 175-181.
[13] B.V.R. Kumar, P.V.S.N. Murthy, P. Singh, “Free convection heat transfer
from an isothermal wavy surface in a porous enclosure”, International
Journal for Numerical Methods in Fluids 1998, 28 , 633–661.
[14] S. Mahmud, P.K. Das, N. Hyder, A.K.M.S. Islam, “ Free convection heat
transfer in an enclosure with vertical wavy walls”, International Journal
of Thermal Sciences 2002 , 41, 440–446.
[15] A. Dalal, M.K. Das, “Laminar natural convection in an inclined
complicated cavity with spatially variable wall temperature”,
International Journal of Heat and Mass Transfer 2005, 48, 3833–3854.
[16] Y. Varol, H.F. Oztop, “Free convection in a shallow wavy enclosure”,
International Communications in Heat and Mass Transfer 2006, 33, 64–
771.
[17] Y. Varol, H.F. Oztop, “Buoyancy induced heat transfer and fluid flow
inside a tilted wavy solar collector”, Building and Environment 2007, 42,
2062–2071.
[18] E. Abu-Nada, H.F. Oztop, “Numerical analysis of Al2O3/water
nanofluids natural convection in a wavy walled cavity”, Numerical Heat
Transfer Part A: Applications 2011, 59 , 403–419.
[19] S. Shimpalee and S. Dutta, “Numerical predition of mass-exchange
between cathode and anode channels in a PEM fuel cell”, International
Journal of Heat and Mass Transfer 2001, 44, 2029-2042.
[20] H. Heidary, M.J. Kermani, “Effect of nano-particles on forced
convection in sinusoidalwall channel”, International Communications in
Heat and Mass Transfer 2010, 37, 1520–1527.
[21] A.A. Kornyshev, A.A. Kulikovsky, “Characteristic length of fuel and
oxygen consumption in feed channels of polymer electrolyte fuel
cells”Electrochimica Acta 2001, 46, 4389-4395.
[22] H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Mergrl and Stolten,
“The current voltage plot of PEM fuel cell with long feed channels”,
Electrochemistry Communication 2001, Vol. 3, pp. 73-80.
[23] L.R. Jordan , A.K. Shukla , T. Behrsing , N.R. Avery , B.C. Muddle , M.
Forsyth, “Diffusion layer parameters influencing optimal fuel cell
performance”, Journal of Power Sources 2000, 86, 250-254.
[24] Broka, K., Ekdunge, P., “Modeling the PEM fuel cell cathode”,
Journal of Applied Electrochemistry 1997 , 27, 281-289.
[25] Soong, C.Y., Yan, W.M., Tseng, C.Y., Liu, H.C., Chen, F., Chu, H.S.,
“Analysis of reactant gas transport in a PEM fuel cell with partially
blocked fuel flow channels” , Journal of Power Sources 2005, 143,
36-47.
[26] Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., “Effects of baffle- blocked flow channel on reactant transport and cell performance of a proton
exchange membrane fuel cell”, Journal of Power Sources 2005, 142,
125-133.
[27] M. Khakbaz-Baboli, M.J. Kermani, “A two-dimensional, transient,
compressible isothermal and two-phase model for the air-side electrode of
PEM fuel cells”, Electrochimica Acta 2008, 53, 7644–7654.
[28] Jenn-Kun Kuo, Tzu-Hsiang Yen, Cha’o–Kuang Chen,
“Three-dimensional numerical analysis of PEM fuel cells with straight
and wave-like gas flow fields channels”, Journal of Power Sources
2007, 11.065.
[29] N. Khajeh-Hosseini-Dalasm, Kazuyoshi Fushinobu, Ken Okazaki,
“Three-dimensional transient two-phase study of the cathode side of a
PEM fuel cell”, International Journal of Hydrogen Energy 2010, 35,
4234–4246.
[30] H.Heidary, M.J.Kermani, “Enhancement of heat exchange in a wavy
channel linked to a porous domain; a possible duct geometry for fuel
cells.” International Communications in Heat and Mass Transfer 2011, 39,
112-120.
[31] Patankar S.V., “Numerical heat transfer and fluid flow”, McGraw-Hill,
New York, 1980.
[32] Thompson J.F., Thames F.C., Mastin C.W., “Automatic numerical
generation of body-fitted curvilinear coordinate system for field
containing any number of arbitrary two-dimensional bodies” , Journal of
Computational Physics 1974, Vol. 15, pp.299-319.
[33] Yang, C.H., “Computational fluid dynamics study of lower urinary tract system based on medical imaging technology”, Master Thesis, National
Tsing Hua University, Taiwan, 2002.
[34] Wu B.X., Gebremedhin K.G., “Numerical simulation flow field around
a cow using 3-D body-fitted coordinate system”, Journal of Thermal
Biology, Vol. 26 2001, pp.563-573.
[35] Versteeg H.K., Malalasekera W., “An introduction to computational
fluid dynamics-The finite volume method”, Longman, London, 1995.
[36] Tannehill J.C., Anderson D.A., Pletcher R.H., “Computational fluid
mechanics and heat transfer”, Taylor & Francis, Levittown, 1997.
[37] Ferziger J.H., Peric M., “Computational methods for fluid flow”,
Springer Verlag, New York, 2002.
[38] Chung T.J., “Computational fluid dynamics”, Cambridge University
Press, Cambridge, UK, 2002.
[39] Bagley J.D., “The Behavior of adaptive system which employ genetic
and correlation algorithm”, Dissertation Abstracts International 1967, Vol.
28.
[40] De Jong K.A., “An analysis of the behavior of a class of genetic
adaptive systems,” PhD Dissertation, University of Michigan 1975, No.
76~9381.
[41] Goldberg D.E., “Genetic algorithms in search, optimization and machine
learning,” Addison-Wesley, 1989.
[42] Davis L.D., “Handbook of genetic algorithms”, Van Nostrand Reinhold,
1991.
[43] Koza J.R., “Genetic programming, on the programming of computers by
means of natural selection, MIT Press, 1992.
[44] 葉怡成, 高等實驗計算法(Advanced Design of Experiments),五南圖書公司, 2009.
[45] 周明, 孫樹棟, 遺傳算法原理及應用(Genetic Algorithms: theory and
applications), 國防工業出版社, 1999.