簡易檢索 / 詳目顯示

研究生: 俞盈如
Yu, Ying-Ju
論文名稱: 結合熱力模式與動力模式之史特靈引擎動態模擬
Dynamic Simulation of a Beta-Type Stirling Engine via the Combination of the Thermodynamic and Dynamic Models
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 97
中文關鍵詞: 動態模擬史特靈引擎Beta 型熱力與動力模式
外文關鍵詞: Dynamic simulation, Stirling engine, Beta type, Thermodynamic and dynamic models
相關次數: 點閱:116下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對β型菱形驅動史特靈引擎發展相關的熱力及動力數值模擬,並藉由這些相關模式進行各部位零件與不同工作條件的模擬,目的在找出引擎的最佳的功輸出及熱效率。首先為熱力學模式的分析,將引擎分為三個控制容積包括環狀再生通道、壓縮室、以及膨脹室。接著由理想氣體定律和熱力學第二定律求得控制容積內的壓力、溫度、以及熱傳量的變化。進而算出引擎的輸出功及熱效率。在推導出熱力學模式之後,便可以對引擎的重要的幾何參數尺寸進行研究。此外,更進一步推導菱形機構運動的關係式,利用先前在熱力學模式所算出的膨脹室及壓縮室內氣體的壓力,如將其加以轉換成作用在活塞及移氣器上的力,便可以輸入菱形機構運動的關係式裡,得到作用在引擎的力矩。引擎力矩可分成摩擦力力矩、氣體作用力矩、慣性力矩、以及負載力矩。引擎的暫態運作情況便可知悉。再藉由一連串的參數分析,可以得到引擎在不同零件尺寸以及運轉條件下的運作狀況。

    This paper aims at finding the optimum performance of the beta-type Stirling engine with rhombic-drive mechanism under different operational and geometrical constraints through the coupling of the thermodynamic and the dynamic model. First, a thermodynamic model has been proposed. By taking into account of the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Results are presented to show the essential information during the operation of the engine, including the periodic variation of the pressure, temperature, and heat transfer inside the chambers. Then the power output and thermal efficiency of the engine are calculated. Several key factors that affect the engine performance were discussed detail through an extensive parameter study based on the thermodynamic model. The detailed gas pressure profile inside the chambers was obtained during the thermodynamic model simulation. The gas pressure was then translated to the force that exerted on the piston and the displacer and was inputted to the derived dynamic model of the rhombic-drive mechanism. In this manner, the transient rotational speed of the engine is calculated through the equation of conservation of angular momentum before the steady-state regime is reached. The torque of the engine can be calculated as long as the gas force torque, the inertia torque, the friction torque, and the load torque are verified. The parameters that affect the transient state of the engine are studied. A conclusion was drawn for improving the performance of the engine under different geometrical and operating conditions.

    ABSTRACT ii ABSTRACT IN CHINESE iv ACKNNOWLEDGEMENT v CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix NOMENCLATURE xi CHAPTER I INTRODUCTION 1 1.1 Literature Survey 1 1.2.1 Concentrating Solar Power System Overview 2 1.2.2 Stirling Engine Overview 3 1.2 Thesis Outline 6 CHAPTER II THERMODYNAMIC MODEL 8 2.1 Control Volume Analysis 9 2.1.1 Regenerative Channel 10 2.1.2 Expansion Chamber 15 2.1.3 Compression Chamber 17 2.1.4 Work Output and Thermal Efficiency 19 2.2 Simulation Results 20 CHAPTER III PARAMETRIC STUDY BY THERMODYNAMIC MODEL 27 3.1 Analysis Of The Displacement Curves 27 3.1.1 Displacer Length 28 3.1.2 Eccentric Distance 29 3.1.3 Displacer Radius 30 3.1.4 Phase Angle 31 CHAPTER IV DYNAMIC MODEL 33 4.1 The Rhombic-Drive Mechanism 34 4.1.1 Kinematics of Rhombic-Drive Mechanism 35 4.1.2 Dynamics of Rhombic- Drive Mechanism 39 4.2 Simulation Results 45 CHAPTER V PARAMETRIC STUDY BY DYNAMIC MODEL 47 5.1 Transient State Performance under Different Working Conditions 47 5.1.1 Initial Engine Speed 47 5.1.2 Flywheel Moment of Inertia 48 5.2 Dynamic Characteristic Curve in Different Operational Constraints 49 5.2.1 Loading Effects 49 5.2.2 Initial Pressure and Heat Source Temperature Effects 50 5.2.3 Displacer Length Effects 51 5.2.4 Eccentric Distance Effects 51 5.2.5 Regenerative Gap Size Effects 52 CHAPTER VI CONCLUDING REMARKS 54 REFERENCES 56 TABLES 59 FIGURES 62 APPENDIX MEASUREMENT OF THERMODYNAMIC CYCLE IN A RHOMBIC-DRIVE STIRLING ENGINE [32] 91 PUBLICATION LIST 96 VITA 97

    [1]Walker, G., 1980, Stirling Engines, Oxford, New York.
    [2]Thomas, M., Peter, H., Barry, B., Bruce, O., Wolfgang, S., Vernon, G., Reiner, B., Richard, D., Charles, A., and James, M., 2003 “Dish-Stirling System: an Overview of Development and Status,” ASME J. Sol. Energy Eng., 125, pp. 135-51.
    [3]SES SunCatcher, Available from: Inc.: http://www.stirling energy.com.
    [4]Reinalter, W., Ulmer, S., Heller, P., Rauch, T., Gineste, J.M., Ferriere, A., and Nevpveq, F., 2008 “Detailed Performance Analysis of a 10 kW Dish/Stirling System,” ASME J. Sol. Energy Eng., 130, 011013, pp.1-6.
    [5]Liao, CC., 2009, “Analysis and Evaluation of Concentrating Solar Power System,” Master thesis, Department of Energy of Mechatronics, National Central University, Taoyan, Taiwan.
    [6]Joachim, G., Bernhard, H., Stefan, S., Markus, S., Reiner, B., Edgar, T., Kathrin, B., David, I., and Christian, R., 2010, “Solar Concentrating Systems Using Small Mirror Arrays,” ASME J. Sol. Energy Eng., 132(011003), pp.1-4.
    [7]Yamaguchi, H., Sawada, N., Suzuki, H., Ueda, H., and Zhang, X.R., 2010, “Preliminary Study on a Solar Water Heater Using Supercritical Carbon Dioxide as Working Fluid,” ASME J. Sol. Energy Eng., 132(011010), pp.1-6.
    [8]Redi, S., Aglietti, G.S., Tatnall, A.R., and Markvart, T., 2010, “An Evaluation of a High Altitude Solar Radiation Platform,” ASME J. Sol. Energy Eng., 132(011004), pp.1-8.
    [9]Ross, B., 1995, “Status of the Emerging Technology of Stirling Machines,” in IEEE AES System Magazine.
    [10]Berchowitz, D.M., 1983, “The Development of a 1 kW Electrical Output Free Piston Stirling Engine Alternator Unit,” in The 18th Intersociety Energy Conversion Engineering Conference, Orlando, Florida, pp. 897-901.
    [11]Ross, A., 1993, Making Stirling Engines, Ross Experimental.
    [12]Rankine, W.J.M., 1859, Thermodynamics, Trans. Roy Soc, London.
    [13]Schmidt, G., 1871, Theorie der Lehmannschen Calorischen Maschine, Zeit Des Vereines deutsch Ing, 15, pp.1-12.
    [14]Urieli, I., and Berchowitz, D., 1984, Stirling Cycle Engine Analysis. Alternative Sources of Energy, Bristol: Adam Hilger, pp. 71.
    [15]Finkelstin T., 1967, “Thermodynamic Analysis of Stirling Engines,” Journal of Spacecraft and Rockets, 4(9), pp.1184.
    [16]Schulz, S., and Schwendig, F., 1996 “A General Simulation Model for Stirling Cycles,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 118(1), pp.1-7.
    [17]Andersen, S.K., Carlsen, H., and Thomsen, P.G., 2006, “Control Volume Based Modelling in One Space Dimension of Oscillating, Compressible Flow in Reciprocating Machines,” Jol. Simulation Modelling Practice and Theory, 14(8), pp.1073-1086.
    [18]Kongtragool, B., and Wongwises, S., 2006, “Thermodynamic Analysis of a Stirling Engine Including Dead Volumes of Hot Space, Cold Space and Regenerator,” Renewable Energy, 31(3), pp.345-359.
    [19]Karabulut, H., Aksoy, F., Ozturk, E., 2009, “Thermodynamic Analysis of a Beta Type Stirling Engine with a Displacer Driving Mechanism by Means of a Lever,” Renewable Energy, 34(1), pp.202-208.
    [20]Parlak, N., et al., 2009, “Thermodynamic Analysis of a Gamma Type Stirling Engine in Non-Ideal Adiabatic Conditions,” Renewable Energy, 34(1), pp.266-273.
    [21]Mahkamov, K., 2006, “An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine,” Journal of Solar Energy Engineering-Transactions of the Asme, 128(1), pp.45-53.
    [22]de Boer, P.C.T., 2003, “Maximum Attainable Performance of Stirling Engines and Refrigerators,” Journal of Heat Transfer-Transactions of the ASME, 125(5), pp.911-915.
    [23]Jones, J.D., 1990, “Optimization Of Stirling Engine Regenerator Design,” in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference (IECEC-90), August 12-17, pp.359-365.
    [24]Organ, A.J., 1997, The Regenerator and the Stirling Engine, Mechanical Engineering Publications, London.
    [25]Giakoumis, E.G., and Rakopoulos, C.D., 1998, “Simulation and Analysis of a Naturally Aspirated IDI Diesel Engine Under Transient Conditions Comprising the Effect of Various Dynamic and Thermodynamic Parameters,” Energy Convers Manage, 39, pp.465-84.
    [26]Giakoumis, E.G., Rakopoulos, C.D., and Dimaratos, A.M., 2008, “Study of Crankshaft Torsional Deformation Under Steady-State and Transient Operation of Turbocharged Diesel Engines,” J. Multi-body Dyn. 222(1), pp.17-30.
    [27]Hargreaves, C.M., 1991, The Philips Stirling Engines, Elsevier, New York.
    [28]Paul, B., 1978, Kinematics and Dynamics of Planar Machinery, John Wiley and Sons, New York.
    [29]Kikuchi, T., Ito, S., and Nakayama, Y., 2001, “Piston Friction Analysis Using a Direct-Injection Single-Cylinder Gasoline Engine,” Proc. JSAE Annu. Congr, 115, pp.1-4.
    [30]Nehme, H.K., Chalhoub, N.G., and Henein, N.A., 2000, “Effects of Filtering the Angular Motion of the Crankshaft on the Estimation of the Instantaneous Engine Friction Torque,” J. Sound Vib, 236(5), pp.881-94.
    [31]Burden, R.L., and Faires, J.D., 2005, Numerical Analysis (8th ed.), Thomson Brooks/Cole.
    [32]Cheng, C.H., and Tsai, Y.C., 2010, “Measurement of Thermodynamic Cycle in a Rhombic-Drive Stirling Engine,” Proceedings of the 26th Natonal Conference of the CSME, Tainan, Taiwan, Nov., pp.21-22.

    下載圖示 校內:2010-10-01公開
    校外:2010-10-01公開
    QR CODE